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ABSTRACT

Aircraft wake vortices represent a possible hazard for other
aircrafts flying nearby, in particular on the outskirts of
airstrips. In this work, partial reconnection of a simplified
system of two unequal-strength vortices is studied in order
to assess its impact on the longevity of the wake vortex sys-
tem. A spectral method is used to carry out DNS (Direct
Numerical Simulation) in order to study the reconnection of
two orthogonal vortices for Reynolds number (Γ/ν) = 104

following the approach of Boratav et al. [2]. Hyperviscous
LES (Large Eddy Simulation) simulations are also executed
to study partial reconnection for Reynolds numbers varying
from 104 to 106. The internal structure of the main vortex is
examined with a particular attention to the propagating vor-
ticity perturbations. These structures are found to be very
similar to what has been previously observed in the evolution
of four-vortex systems [6]. Beyond the mechanisms of partial
reconnection and its structures, methodological aspects with
regards to the dimensions of the periodic domain and the use
of hyperviscosity are discussed.

1 INTRODUCTION

In order to take off and fly, an airplane must generate a force
equal to its weight. It is known that when a wing generates
lift, it also generates a pair of counter-rotating vortices. These
little "tornados" can be very powerful and their intensity is
proportional to the weight of the aircraft [12], representing a
potential hazard for other aircrafts flying nearby. These vor-
tices are the cause of the delays between two takeoffs / land-
ings in congested airports. The waiting time required between
each aircraft is related to the intensity and persistence of these
vortices. Dissipation of these structures depends heavily on
hydrodynamic instabilities which are the source of fine tur-
bulence in such flow. On their part, instabilities and the wake
vortex dynamics depend very much on the internal structure
of the vortices, the atmospheric turbulence and eventually the

Figure 1: Schematics of the four-vortex system created by an
airplane when the tailplane generates downforce.

ground effects.

Thorough understanding of these dynamics is very impor-
tant to improve flight safety and to reduce airport congestion
[3, 8, 11]. Partial reconnection occurs when a pair of counter-
rotating vortices of varying intensity meet. This happens for
example when the tailplane generates downforce at takeoff /
landing. In addition to the wingtip vortices, the tailplane gen-
erates a second pair of weaker vortices. This creates a four-
vortex system, as seen on Figure 1. Previous experiments
have shown that the decay of similar vortex configurations is
dominated by the medium wavelength instability, which de-
forms the weaker vortices into the so-called Omega loops, as
seen on Figure 2 [10]. Also, it should be noted from Figure 2
that before the partial reconnection occurs, the secondary vor-
tex is locally almost orthogonal to the main vortex. Recent
studies [6] suggest that partial reconnection generates a large
spectrum of small-scale turbulent structures that should sig-
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Figure 2: Four-vortex system created by a triangular-flapped
wing. Taken from "Experimental study of the instability of
unequal strength counter-rotating vortex pairs" [10].

nificantly increase the dissipation rate of the wake vortices.
In this work, partial reconnection of a simplified system of
two orthogonal, unequal-strength vortices is studied.

2 METHODOLOGY

In this work, a standard Fourier-Galerkin projection in the
three Cartesian directions [4] is used to solve the conservative
formulation of the incompressible Navier-Stokes equations in
which a hyperviscous term has been added

∂u
∂t

+∇ · (uu) =−∇P+ν∇ ·∇u−νhv∇
16u, (1)

where P= p/ρ is the reduced pressure. The incompressibility
constraint

∇ ·u = 0 (2)

is exactly satisfied by a reprojection of the velocity field onto
a divergence free space. The Fourier expansion for velocity
has the form

u(x, t) = ∑
k

û(k, t)eik·x, (3)

where the wavenumber and position vectors are

k = { kx,ky,kz} x = { x,y,z}

kq = mq
2π

Lq
−

Nq

2
+1≤ mq ≤

Nq

2
(4)

with q being an index standing for x, y or z, and Lq the size of
the periodic domain in the q direction.

Figure 3: Initial configuration for the two orthogonal,
unequal-strength vortices. The figure shows vorticity isosur-
faces ω∗ = [0.25,0.5,0.75].

A phase-shift procedure is implemented for dealiasing pur-
poses and time integration is achieved using an explicit 3rd
order Runge-Kutta scheme. Hyperviscosity (νhv) is intro-
duced in order to stabilize the flow evolution at high Reynolds
numbers and will be discussed later.

Dissipation rate per unit mass is computed as

ε =
1
V

ν

∫
V

∇u ·∇u dV +
1
V

νhv

∫
V

∇
8u ·∇8u dV. (5)

The initial radial vorticity distribution of each vortex is gen-
erated with a high-order formulation of the form

ω(r) = Γ
2β4R4

π(r2 +β2R2)3 (6)

where β = 0.7788, and in which Γ is the total circulation and
R is the size of the vortex. Validation of the present spectral
code with the results of Boratav et al. [2] has previously been
presented in [5].

In this study, all quantities are normalized using the scales
given by the inner-spacing b0 and the main vortex circulation
Γ1 (see Figure 3). The radius of both vortices and the circu-
lation of the secondary vortex are defined independently. The
relation

Γ2

Γ1
=

R2
2

R2
1

(7)

is however enforced in order to ensure similar vorticity
magnitude for both vortices. In this paper, all simulations
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are conducted with Γ2/Γ1 = 0.3 and R1/b0 = 1. Hence,
R2/b0 =

√
0.3. Reference velocity and time are given by

Vre f = Γ1/b0 and tre f = b0
2/Γ1 respectively. Reynolds num-

ber is Re = Γ1/ν, where ν is the kinematic viscosity of the
fluid. Throughout the text, non-dimensional time is given by
t∗ = t/tre f .

As seen on Figure 3, the periodic box is characterized by its
spatial dimensions (Lx,Ly,Lz). For a given box size, the num-
ber of collocation points in each direction (Nx,Ny,Nz) deter-
mines the resolution of the box. For all simulations, we have
chosen

Lx

Nx
=

Ly

Ny
=

Lz

Nz
(8)

in order to avoid artificial anisotropic behaviour of the flow at
the small scales. All present simulations are performed with
cubic boxes, hence L = Lx = Ly = Lz and N = Nx = Ny = Nz.

3 PARTIAL RECONNECTION PROCESS

Initially, unequal strength vortices are placed orthogonally
in the periodic box, as seen in Figure 3. This configura-
tion not being an equilibrium solution, no initial perturba-
tion is needed to begin the partial reconnection process. The
first instants of the phenomenon are characterised by the sec-
ondary vortex wrapping itself around the larger one, as seen
on Figure 5a. While the secondary vortex is highly deformed,
the main vortex remains almost intact in comparison. When
the secondary vortex approaches the main vortex sufficiently,
partial reconnection occurs, as seen on Figure 5b. This cre-
ates a circulation deficit on the main vortex and two circula-
tion "steps" that move away from each other and eventually
collide with their periodic images. Reconnection is character-
ized by the formation of small bridges (or fingers) of vorticity,
as previously observed in other numerical simulations of vor-
tex reconnection [2, 6].

This process leaves the main vortex weakened and disorga-
nized, as seen on Figure 5c. When the traveling structures
meet their periodic images, it causes an additional burst of
small structures, as seen on Figure 5d. However, the focus
of this paper is set on the partial reconnection itself; there-
fore any interaction with the neighbours is not desirable at
this point. These interactions do exist in nature [10] and they
appear to contribute significantly to the energy decay of the
four-vortex system. They are thus certainly of interest for
future work. From Figure 4 and Figure 5, one can see that
the partial reconnection phenomenon produces a lot of small
structures. This leads to increased dissipation, as seen on
Figure 6, which compares the partial reconnection process to
the normal viscous dissipation of the same vortices placed far
away from each other.

Figure 4: Kinetic energy spectra at different times during the
partial reconnection process. Re= 104, Γ2/Γ1 = 0.3, L= 2π,
N = 512 and νhv = 0.

4 DIMENSIONS OF THE PERIODIC DOMAIN

To study the partial reconnection of two free vortices using
a fully periodic domain, care must be taken with regards to
the dimensions of the periodic box to ensure that implicit
neighbours have negligible impact on the reconnection pro-
cess. Hence, simulations have been carried out to quantify
the impact of the neighbours in order to choose the appropri-
ate periodic box size. Figure 7 shows the evolution of the dis-
sipation rate for three simulations with Re= 104, Γ2/Γ1 = 0.3
and νhv = 0 for cubic boxes of dimensions L = 2π, 3π and 4π.
The smallest scale resolved is always the same, i.e., the ratio
L/N is preserved in all three Cartesian dimensions for each
simulation. In order to compare each simulation, dissipation
rate is computed in the physical domain on a (2π)3 sub-box
centered in each periodic box.

One can see from Figure 7 that in this particular case, the
three simulations agree very well until t∗ ≈ 55, which corre-
sponds to the time where the traveling structures meet their
periodic images for L = 2π, while they are just leaving the
sub-box for L = 3π and L = 4π. Before this time, velocity
induction from neighboring vortices appears to be marginal,
since changing the periodic box dimensions (thereby modify-
ing the induction intensity) has no impact on the global flow
evolution. Hence, L = 2π can be used to study the recon-
nection phenomenon with negligible impact from neighbours
until t∗ ≈ 55, when interactions begin to modify greatly the
dynamics inside the periodic box.

Figure 7 simulations have been carried out with Re = 104.
Similar analysis at higher Reynolds numbers leads to the
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(a) t∗ = 11.7 : Wrapping of the secondary vortex around the main
vortex.

(b) t∗ = 30.3 : Partial reconnection between the two vortices.

(c) t∗ = 52.9 : Evolution of the vortex system after the partial recon-
nection.

(d) t∗ = 86.5 : Burst of the traveling structures with their periodic
images.

Figure 5: Local dissipation colored vorticity isosurfaces at different times. Re = 104, Γ2/Γ1 = 0.3, L = 2π, N = 512 and
νhv = 0. Vorticity isosurfaces are ω∗ = [0.25,0.5,0.75,1.0]. The bolder the isosurfaces are colored, the higher is the local
dissipation rate.
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Figure 6: Comparison of the dissipation rate for the partial
reconnection between two vortices and the normal viscous
dissipation of the same vortices placed far away from each
other (no interaction). Γ2/Γ1 = 0.3, L= 2π, N = 512, νhv = 0
and Re = 104. Dissipation rate is normalized by the initial
dissipation rate in the distant vortices simulation.

Figure 7: Effect of the dimensions of the periodic domain on
dissipation rate for three different box sizes. All boxes are
cubic. Dissipation is computed on a (2π)3 sub-box centered
in each periodic box. Re = 104, νhv = 0 and Γ2/Γ1 = 0.3.
Dissipation rate is normalized by the dissipation rate at t∗ =
0.

same conclusion, i.e., L = 2π allows thorough study of the
partial reconnection process by granting a good timespan

with minimal impact from neighboring vortices and a very
good resolution at reasonable cost.

5 HYPERVISCOSITY TO ACHIEVE
HIGHER REYNOLDS NUMBERS

The motivation to simulate partial reconnection at higher
Reynolds number is well demonstrated by approximating the
circulation-based Reynolds number of an aircraft obtained by
assuming an elliptical load distribution

Γ =
4L

ρ U∞ b π
(9)

where L is the maximum take-off weight, b is the wingspan,
U∞ is the cruise speed and ρ is the density of the air.

For example, a Bombardier Q300 has approximately the fol-
lowing characteristics : L = 191 kN, b = 27.4 m and U∞ =
532 km/h [1], giving a circulation-based Reynolds number
Re≈ 3 ·106. Hence, simulation of partial reconnection at high
Reynolds numbers is desirable as most civil aircrafts have a
circulation-based Reynolds number ranging from 106 to 108.

Hyperviscosity is introduced as a way to overcome the limited
resolution of the flow velocity spectrum resulting from finite
computational resources. When increasing Reynolds number
without hyperviscosity, a truncated spectrum may eventually
lead to an accumulation of energy in the smallest scales, due
to the inability of the discretized flow to achieve sufficient
dissipation. In the context of flight safety, one could argue
that only the large scales matter, being the only ones caus-
ing a possible threat. This is true, and for accurate predic-
tions of the large structures, one must make sure that they do
not get polluted by interactions with artificially boosted small
scale structures. Indeed, small scales interact with larger ones
through the convolution sum associated with the non-linear
term in (1). In a real high-Reynolds number flow, the energy
of the smaller scales is decades weaker than that of the larger
ones, so small scales don’t influence big structures. How-
ever, when energy is forced to accumulate at the end of the
spectrum, interactions may become significant, thus possibly
yielding to erroneous results. Hyperviscosity causes the flow
to dissipate the smaller scales but has negligible impact on the
large structures. A high-order hyperviscosity (hyperviscosity
index h = 8 [9]) is chosen to accentuate this latter effect. Yet,
in order to draw conclusions from simulations using this ar-
tifice, one has to make sure that the energy contained in the
scales affected by hyperviscosity is only cascading down to-
wards dissipation, and thus, has no impact on the evolution of
the dominant structures of the flow.
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Figure 8: Evolution of the normalized dissipation rate for
different hyperviscosities. Re = 106, L = 2π, N = 512 and
Γ2/Γ1 = 0.3. Dissipation rate is normalized by the dissipa-
tion rate at t∗ = 0.

Figure 9: Kinetic energy spectra at t∗ = 50 for different hy-
perviscosities. Re = 106, L = 2π, N = 512 and Γ2/Γ1 = 0.3.

Simulations have been carried out for Re = 106 using differ-
ent hyperviscosities. For each of these simulations, evolu-
tion of the dissipation rate and the (y,z) plane-averaged ki-
netic energy spectrum at t∗ = 50 is shown on Figure 8 and
Figure 9 respectively. One can see from Figure 8 that the
simulation without hyperviscosity diverges at t∗ ≈ 35. It is
also apparent from Figure 9 that at t∗ = 50, the tails of the
kinetic energy spectra differ significantly. However, all sim-

ulations (except the one without hyperviscosity) agree well
on predicting the evolution of the dissipation rate. These ob-
servations lead to the conclusion that a well-chosen hypervis-
cosity allows sufficient dissipation at the small scales with-
out affecting the global evolution of the flow, thus allowing
high Reynolds number simulations with limited resolution.
Since νhv = 10−38 permits sufficient dissipation at Re = 106

and that the flow seems unaffected by higher hyperviscosi-
ties, one could argue that νhv = 10−38 is a good choice for
Re ≤ 106. This hyperviscosity is hence used for all simula-
tions presented in the following section.

6 EFFECT OF REYNOLDS NUMBER ON
PARTIAL RECONNECTION

Simulations with L = 2π, N = 512 and Γ2/Γ1 = 0.3 are car-
ried out for different Reynolds numbers ranging from Re =
104 to Re = 106. Figure 10 shows the evolution of the dissi-
pation rate for these simulations.

Figure 10: Evolution of the normalized dissipation rate for
different Reynolds numbers with L = 2π, N = 512, Γ2/Γ1 =
0.3 and νhv = 10−38. Dissipation rate is normalized by the
initial dissipation rate at Re = 106.

Dissipation rate due to the partial reconnection of two orthog-
onal vortices appears to be almost Reynolds-independent for
Re & 2 · 105. At the beginning of the reconnection process,
one can see that dissipation in the box is strongly affected
by the Reynolds number. It is then a purely viscous, non-
turbulent phenomenon. However, at later times, one observes
that the peak dissipation rate is almost the same and occurs
at the same time for the three largest Reynolds numbers. Par-
tial reconnection being a viscous process [7], this suggests
that for this initial configuration, evolution of the flow always
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(a) Re = 4 ·104

(b) Re = 106

Figure 11: Local dissipation coloured vorticity isosurfaces
at t∗ = 50. Γ2/Γ1 = 0.3, L = 2π, N = 512, νhv = 10−38.
Vorticity isosurfaces are ω∗ = [0.25,0.5,0.75,1.0].

produces sufficiently small structures in order for the recon-
nection to happen, independently of the Reynolds number.
These small structures are responsible for the strong increase
of the dissipation rate around t∗ ≈ 35 during the partial recon-
nection process.

Figure 11 shows vorticity isosurfaces at t∗ = 50 for Re = 4 ·
104 and Re = 106. While reaching similar dissipation rates
in the heart of the reconnection process, one can see from
Figure 11 that small-scale flow structures are quite different.
However, the energy spectra of both simulations agree quite
well in the small wavenumbers range (see Figure 12).

Figure 12: Kinetic energy spectra with L = 2π, N = 512,
νhv = 10−38 and Γ2/Γ1 = 0.3 at t∗ = 50 for two different
Reynolds numbers.

7 CONCLUSION

To conclude, spectral methods are used to simulate the par-
tial reconnection of two unequal-strength, orthogonal vor-
tices. Impact of the periodical box size is assessed and it
is found that a (2π)3 box enables simulation of the recon-
nection process with minimal impacts from neighboring vor-
tices until t∗ ≈ 55. Then, using this box size, the effect of
hyperviscosity on the vortex dynamics at Re = 106 is exam-
ined. A hyperviscosity of νhv = 10−38 is chosen and is used
to simulate a span of Reynolds numbers ranging from 104 to
106. Results seem to indicate that the dissipation rate due
to this initial configuration of vortices becomes Reynolds-
independent at Re & 2 ·105. Future work will include, in ad-
dition to a deepening of the present research, characterisation
of the partial reconnection process for different circulation ra-
tios (0.1≤ Γ2/Γ1 ≤ 0.9). Diverse ways to evaluate coherence
(hence danger) of aircraft wake vortices during their decay
will also be explored. In the long term, ways to accelerate the
dissipation of these vortices in the context of flight safety on
the outskirts of airstrips will be sought.
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