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ABSTRACT

Two partitioned fluid-structure interaction schemes
are presented and compared in this paper which
is concerned with aeroelasticity involving large-
displacements deforming bodies. The first scheme is
implicit while the second is explicit. It is shown how
artificial and physical compressibility can be used to
stabilize such schemes that are known to be unsta-
ble otherwise. Simulations involving flexible flapping
plates that can be used as propulsion devices are also
presented.

1 INTRODUCTION

In the last several years, the interest in numerical solu-
tions of fluid-structure interaction (FSI) problems has
increased significantly in many fields of research such
as aeronautics, biology, civil engineering, etc. In that
context, many developments have been made to solve
such class of problems. These developments are justi-
fied by the fact that, although efficient numerical meth-
ods exist for both fluid and solid mechanics problems,
the solution of fully coupled aeroelastic problems is
generally not a straightforward task.

Existing FSI coupling method involving large-
displacement elastic solids and incompressible flows
can be split into two categories: partitioned and mono-
lithic (sometimes refer to as direct). The idea behind
partitioned methods is to use state-of-the-art software
and thus benefit from existing optimized technologies
in both fluid and solid mechanics. This paradigm as-
sumes that the coupling between both solvers is rela-
tively cheap in terms of computational resources and
stable. On the opposite, the objective of monolithic
methods is to develop a robust global numerical tool
that can handle FSI problems. In that approach, it is
assumed that the method may outperform the previous

one in terms of stability and performance (particularly
in the case of strong interactions), and that the cost of
more robust and more complex algorithms is worth the
increase in overall performance.

While it is often mentioned that partitioned solver are
good for weak FSI whereas monolithic solvers are well
suited for strong FSI, comparing rigorously mono-
lithic and partitioned solvers is not an easy task be-
cause there exists a wide variety of schemes in both
methodologies. Heil et al. [4] compared the parti-
tioned and the monolithic coupling schemes within the
same finite-element framework. In that context, they
found that for a finite number of tested problems, the
monolithic method outperform the partitioned method
where the fluid-solid interaction is strong (in the case
of very strong interactions, the latter is even reported
to be non-convergent). In the case of weak interaction,
both method appear to be equivalent. In that context,
the monolithic method seems to be the best coupling
method. However, completely monolithic method are
known to produce large and complex linear system that
are often very expensive in terms of computational re-
sources which justifies the quest to develop convergent
and efficient partitioned algorithms.

The reason why the partitioned method is sometimes
inefficient or even unstable is now well known and
sometimes refer to as the added-mass effect. The
problem lies in the incompressibility constraint of
the fluid as reported by Causin et al. [1] who also
present some interesting analysis using a simplified
FSI model. Firstly, an explicit partitioned scheme is
unconditionally unstable when the strength of the in-
teraction reaches some level. Secondly, for the im-
plicit partitioned scheme to be stable, a relaxation co-
efficient must be used between each outer-iteration.
It is further shown that the relaxation factor must be
smaller for strong interactions and small time-steps,



which may impair significantly the convergence rate
of the method. Fortunately, some authors provide al-
ternatives that allow to increase the efficiency and/or
stabilize partitioned methods. Among these methods,
the artificial compressibility approach [3, 5] appears to
be efficient and simple.

In this paper, we present two partitioned FSI coupling
schemes that are intended to model strong fluid-solid
interactions involving large structural displacements.
The first one is an implicit scheme based on a fixed-
point iterative procedure. The artificial compressibility
method is used to stabilize the scheme when needed.
Therefore, this scheme is similar to the one presented
by Degroote et al. [3]. The second one is an explicit
scheme. It is shown that using a slightly compress-
ible flow model allows to stabilize such a scheme. A
brief description of the mathematical models and nu-
merical discretization methods used is presented first.
Then, the FSI coupling strategies are presented. At
last, some numerical experiments that establish the po-
tential of the proposed schemes are presented. An im-
portant contribution of this work is thus to show how
to obtain an efficient coupling scheme by using a judi-
cious combination of physical and artificial compress-
ibility.

2 MATHEMATICAL MODELS

In this paper, we deal with the following models: in-
compressible and slightly compressible flows as well
as elastic solids and beam structures involving large
displacements. All these continuous media obey the
following conservation laws (in an arbitrary moving
control volume formulation), namely the space con-
servation, the mass conservation, and the momentum
conservation:

∂

∂t

∫
V (t)

dV −
∫

S(t)

v̂ · n̂dS = 0, (1)

∂

∂t

∫
V (t)

ρdV +
∫

S(t)

ρc · n̂dS = 0, (2)

∂

∂t

∫
V (t)

ρvdV +
∫

S(t)

ρv(c · n̂) dS =

∫
V (t)

fdV +
∫

S(t)

n̂ ·σdS, (3)

where ρ is the density field, v is the velocity field, v̂
is the control surface velocity, c = v− v̂, f is a body
force, and σ is the stress field. Note that Eq. (1), does

not bring information on any physically meaningful
field, but must nonetheless be respected in the numer-
ical implementation in order to avoid spurious mass
generation. Slightly compressible barotropic Newto-
nian flows are governed by the following constitutive
laws:

σ = −pI + µ
(
∇v+∇vT) , (4)

ρ = ρref + ψ(p− pref), (5)

where p is the pressure field, µ is the dynamic viscos-
ity, and ψ is the compressibility coefficient of the fluid.
Of course, in the case of incompressible flows, ψ = 0.

Elastic structures involving large displacements are
governed by the same conservation laws. A total La-
grangian formulation is used in this work for the solid
media, so that the velocity of the control volume is the
same as the physical medium itself (v̂ = v and c = 0).
Furthermore, the equations are expressed in terms of
the initial state. The momentum conservation equation
(Eq. (3)) then becomes:

∂

∂t

∫
V0

ρ0vdV0 =
∫
V0

f0 dV0 +
∫
S0

n̂ · (S ·FT)dS0, (6)

where S is the second Piola-Kirchhoff stress tensor,
F = I+∇0uT is the deformation gradient, u is the dis-
placement field, and the subscript 0 refers to the initial
state of the solid medium. The constitutive law of an
elastic solid is given by the St. Venant-Kirchhoff law:

S = 2υE + λ tr(E) I, (7)

E =
1
2
(
∇0u + ∇0uT + ∇0u ·∇0uT) , (8)

where E is the Green-Lagrange deformation tensor,
and υ and λ are the Lamé coefficients of the structure.

When dealing with thin elongated structures, a non-
linear beam model is also used. This model assumes
a linear elastic behaviour but allows large displace-
ments. In that sense, it is equivalent to Eqs. (6) to (8).
The Euler-Bernoulli hypotheses are used to obtain a
thin-geometry approximation. The governing equa-
tions for beam structures defined on the x-axis in a total
Lagrangian formulation are, in 2D:
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where p̃ is the lineic pressure, τ̃ is the lineic shear
stress, both acting on the deformed configuration. The
normal stress N and the bending moment M are given
by:

N = EA

[
∂ux

∂x
+

1
2

((
∂ux
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)2

+

(
∂uy
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)2
)]

, (11)

M = EI
[
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)
−
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∂2ux

∂x2

]
, (12)

where E is the Young modulus, A and I are respec-
tively the area and the inertia of the beam section.

3 NUMERICAL DISCRETIZATION

Since the objective of the paper is to establish guide-
lines for the choice of FSI partitioned coupling
schemes, three fluid flow solvers and two structural
solvers are considered.

3.1 Fluid Flow Solvers

The first fluid flow solver involves incompressible
flows. It is an implicit solver that uses the segre-
gated second-order finite volume method. The pres-
sure is treated with a Poisson equation in a SIMPLE
or PISO manner. Time integration is performed with
the backward scheme which is also second-order accu-
rate. This solver has been discussed in further details
in a previous conference [6].

The second flow solver is very similar to the last one,
but it uses the barotropic model (Eq. (5)). The major
difference thus lies in the discretized pressure equation
where some additional terms takes the compressibility
into account. Otherwise, the algorithms and schemes
are the same.

The third flow solver is fully explicit. It is also based
on the barotropic equation of state (Eq. (5)). There-
fore, to obtain an incompressible flow solution, the
compressibility coefficient ψ must be chosen so that
the Mach number Ma = Vref

√
ψ is sufficiently small

(recall that the speed of sound c =
√

∂p
∂ρ

=
√

1
ψ

). The
choice of using a slightly compressible flow solver

rather than an incompressible one for the explicit
scheme is justified as follow:

• The resulting algorithm is matrix-free whereas
an explicit algorithm for incompressible flow in-
volves the solution of an elliptic problem for the
pressure which generates a linear system.

• Ultimately it will be shown that the added-mass
instability is removed (as expected) when using a
compressible fluid.

Of course, such a strategy has the drawback that an ad-
ditional time-step size restriction stability condition is
necessary in the fluid solver (the third constraint be-
low):

‖v‖∆t
∆x

< O(1);
ν∆t
∆x2 < O(1);

∆t
√

ψ∆x
< O(1); (13)

where ν is the kinematic viscosity. Here again, the sec-
ond order finite volume method is used for the spatial
discretization whereas the first order Euler integration
scheme is used for temporal discretization. The choice
of a first order integration scheme is justified by two
factors. First, it is more economical and, second, since
the time-step is very small as it is related to the stabil-
ity constraint in the solid solver (see section 3.2), the
first order precision is most likely to be sufficient.

All these solvers are implemented with moving mesh
support, that is, Eq. (1) is taken into account. The
mesh motion is smoothed over the domain based on
partial differential equations (such as the Laplace or
the pseudo-solid equation) or on radial extrapolation
techniques.

3.2 Structural Solvers

The first structural solver is based on the general solid
model (Eqs. (6) to (8)). The implementation is also
done with the segregated finite volume method. Since
the method is segregated, the implicit algorithm in-
volves explicit terms that are made implicit through an
iterative process (inter-component coupling and non-
linear terms). A Newton-Raphson linearization is thus
not possible. However the resulting matrices are less
complex and diagonally dominant. This has the conse-
quence that for relatively small time-steps, the perfor-
mance of the method is excellent. On the other hand,
when large time-step or steady-state situations occur,
the convergence rate deteriorates (see [6] for further
details). Alternatively, the solver can be configured to
use the explicit central difference method to perform



the time integration. In that context, a typically severe
stability condition appears:

∆t
∆x

√
E
ρ
< O(1), (14)

which is similar to the third condition in Eq. (13)
as they are both a CFL-type condition based on the
speed of sound in their respective media. The second
structural solver is based on the beam model (Eqs. (9)
to (12)). The Galerkin finite element method is used
in conjunction with Hermite shape functions. The
Newton-Raphson method is used to linearize the prob-
lem. The time integration is performed with a second
order backward scheme. This solver can also be con-
figured to use the explicit central difference method to
perform the time integration.

4 FLUID-SOLID COUPLING
STRATEGIES

4.1 Implicit Coupling Using Artificial
Compressibility

The implicit coupling algorithm is built with the in-
compressible flow solver in mind, although it can also
be used with the barotropic solver. An artificial com-
pressibility source term is added in the pressure equa-
tion to stabilize the coupling. This term has the form:∫

V (t)

ψ̃

∆t

(
pn+1

i+1 − pn+1
i
)

dV, (15)

where ψ̃ is the artificial compressibility, i is the outer-
iteration counter and n is the time-step counter. There-
fore, at the end of a time-step, this term tends toward
zero (up to a specified tolerance) hence providing an
incompressible flow solution when the incompressible
flow solver is used. When the barotropic solver is used
instead, the remaining compressibility at the end of the
iterative process is strictly physical. The artificial com-
pressibility assumes a non-zero value only in the first
cell layer next to the FSI interface and zero elsewhere,
following Degroote et al. [3]. Here, the artificial com-
pressibility ψ̃ is set as a constant as small as possible to
obtain a good convergence rate without compromising
the stability. The overall algorithm corresponds to the
following steps:

1. Beginning of time-step.

2. Solution of the solid displacement field using the
fluid stress field from the previous time-step as a
Neumann boundary condition. This gives a dis-
placement predictor.

3. Computation of the new mesh points using the
displacement predictor.

4. Solution of the fluid fields (velocity and pressure)
using the displacement predictor as a Dirichlet
boundary condition.

5. Outer loop:

• Solution of the solid displacement field.
Partial convergence is sufficient as long as
it does not impair the convergence rate.

• Actualization of the interface position. The
rest of the mesh remains fixed.

• Solution of the fluid velocity and pressure
fields. The artificial compressibility term
given by Eq. (15) is used in the continuity
equation to stabilize the coupling. Again,
partial convergence is sufficient as long as it
does not impair the convergence rate.

• Check convergence of residuals of all quan-
tities (solid displacement, fluid velocity and
pressure).

6. End of time-step.

4.2 Explicit Coupling for Slightly Com-
pressible Barotropic Flow

The second FSI scheme that is presented is explicit.
Such a scheme is prone to be unconditionally unsta-
ble when the fluid-solid interaction is too strong. To
remove this unstable character, it is proposed in this
work to use the barotropic explicit flow solver with a
small physical compressibility coefficient. Such a for-
mulation removes the elliptic character of the pressure
equation and, at the same time, the added-mass insta-
bility. The resulting FSI scheme is fairly simple and is
given by these steps:

1. Beginning of time-step.

2. Solution of the solid displacement field using an
explicit scheme. The fluid stress from the pre-
vious time-step is used as a Neumann boundary
condition, which is consistent with the explicit
scheme.

3. Computation of the new mesh points using the
previously computed displacement field.

4. Solution of the fluid field using the new mesh and
the interface velocity as a Dirichlet boundary con-
dition.



5. End of time-step.

Obviously, such a scheme needs to respect all stability
conditions to remain stable (Eqs. (13) and (14)).

4.3 Interface Treatment

The FSI interface conditions are treated as follow: the
solid velocity is applied in the fluid solver as a Dirich-
let boundary condition and the fluid load (pressure
and viscous) is applied in the solid solver as a Neu-
mann boundary condition. In order to allow the use of
non-matching meshes at the interface, a Radial-Basis-
Function (RBF) interpolation is used, following the
recommendations of de Boer et al. [2]. The radial
function used in the RBF interpolation is a thin-plate
spline (r2 log(r)).

5 NUMERICAL EXPERIMENTS AND
RESULTS

In this section, the case of a 2D flexible flapping plate
is studied and tested with different coupling strategies.
The geometry is taken as a 2%-thick flat plate of chord
c with rounded edges which has a heaving motion im-
posed on the leading edge (LE):

yLE = h cos(2π f t). (16)

The dimensionless parameters of the whole aeroelastic
problem are thus:

Re =
ρ fU∞c

µ
= 800, Re f =

ρ f h f c
µ

= 200,
h
c
= 1,

E∗ =
E

ρ f h2 f 2 = 6.24×107, D∗ =
ρs

ρ f
= 6.25.

The compressibility coefficient of the fluid is set to
obtain a nearly incompressible flow (Ma < 0.01) in
the case of simulations involving the barotropic model.
These parameters provide a case where the fluid-solid
interaction is strong. This problem is thus a good can-
didate to evaluate the potential of each proposed FSI
scheme.

The mesh of the fluid domain consists of a 58604-cells
elliptically smoothed quadrilateral O-grid mesh. This
mesh has proven to be sufficient for this specific case
since the oscillating frequency is relatively slow and
the wake of the wing is rapidly convected downstream
so that there is no significant wing-wake interaction.
The mesh of the solid domain is made of a 10× 100
quadrilateral cells distribution in the case of the finite-
volume solver. Simulations using the beam model are

done with a 50 beam-elements mesh. Initial condi-
tions consist of a uniform flow within the whole do-
main. Therefore, this situation represents an impul-
sively started flow. The flow velocity U∞ is imposed
on the left side of the circular domain while an out-
flow condition is imposed on the other side. Table 1
presents a summary of the solver combinations that
have been tested using different FSI schemes.

In these simulations, residual tolerances were the same
for all simulations in order to illustrate the effect of re-
fining the time-step on the number of outer-iterations.
These tolerances have proven to be sufficiently small
for all cases except case E, for which the simulation
was also run with residual tolerance one order of mag-
nitude smaller (results in parenthesis in table Table 1).

It is observed that, even though simulations with a
smaller time-step converge, the convergence rate de-
teriorates to such a point that the maximum number
of iterations is reached before convergence is achieved
when the incompressible flow solver is used (case B
and C). This behavior is contrary to what is expected
and sought for when using a segregated approach. In-
deed, it would be desirable that reducing the time-step
(without changing the residual tolerance) reduces the
required number of iterations since the initial guess
provided by the previous time-step is better. However,
it is also observed that not only the pressure field is al-
ways the last one to reach its convergence criterion, it
also converges more slowly than all other quantities.

It can be concluded that those simulations still have
some significant residual in the pressure equation com-
ing from the artificial compressibility term (Eq. (15)).
However, results of simulations B and C are found
to be in very good agreement with other simulations
even though their pressure fields did not reach the de-
sired tolerance (see, for instance, Fig. 1), which tends
to support the assumption that the remaining residual
of the artificial compressibility term is not physically
significant even if the pressure equation residual is still
relatively high compared to other equations . Short of
a systematic verification, it is thus not possible yet to
determine if this remaining compressibility is signifi-
cant or not without comparing the actual results with a
reference solution.

That is where the use of a barotropic model becomes
interesting. Indeed, using this model, it is possible to
set what would appear to be an additional compress-
ibility from the algorithmic point of view. This com-
pressibility acts as if it was the residual noise of the ar-
tificial compressibility term except that it has a physi-
cal meaning and that it can be quantified. This strategy
is found to be successful.



Table 1: Simulations using different FSI schemes and solver combinations.

ID Solid solver Fluid solver f ∆t ψ̃h2 f 2 Average number
of outer-iterations

(uy,TE−uy,LE)/c
f t = 0.04 f t = 0.125

A Beam Incompressible 0.0005 0.0075 6.7 0.047197 0.15278
B Beam Incompressible 0.0001 0.00025 40∗ 0.047222 0.15279
C StVK Incompressible 0.0001 0.0125 40∗ 0.046787 0.14944
D Beam Barotropic 0.0005 0.0025 5.4 0.047205 0.15279
E∗∗ Beam Barotropic 0.0001 0 2.7 (7.1) (0.047221) (0.15280)
F StVK Barotropic 0.0001 0 7.7 0.046816 0.15429
G StVK-expl. Barotropic-expl. 5×10−9 - - 0.046767 -

∗ Maximum number of iterations reached before convergence criteria is met.
∗∗ Number in parenthesis correspond to the solution using a finer residual tolerance.

Indeed, as reported in Table 1, simulations involving
the barotropic model always converge in less iterations
than their incompressible counterparts. Furthermore,
simulations with a smaller time-step need less itera-
tions to reach the same convergence tolerance, which
is a desirable property that is not achieved when the
incompressible flow solver is used. Also, these sim-
ulations with a smaller time-step do not require arti-
ficial compressibility at all. This is explained by the
fact that the elliptic character of the pressure equation
is lost when the barotropic model is used.

In terms of required CPU time, Table 2 shows the rel-
ative cost of the complete FSI simulation with respect
to each single-field simulation. The first column cor-
responds to the first few time-steps of the simulation
while the second column corresponds to the rest of the
simulation. The reason for that distinction is to dis-
criminate the effect associated to the impulsive start-up
which usually increases the number of outer-iterations.

Each single-field simulation is performed with the
same solver parameters except for these modifications:
the FSI interface is moved according to the imposed

(a) Case A (b) Case C

Figure 1: Pressure coefficient at f t = 0.125.

motion of the leading edge in the fluid simulation and a
constant traction boundary condition is imposed on the
FSI interface in the solid simulation. Furthermore, the
fluid simulation is carried-out without artificial com-
pressibility. The overall result is that the overhead as-
sociated to the FSI coupling is very small.

Regarding the explicit FSI scheme, as stated earlier,
only the barotropic fluid solver can provide a stable
scheme. Furthermore, the beam solver appears to be
unstable, even when the time-step respects all stability
conditions. This is probably attributed to the fact that
the data exchange at the FSI interface is not energy-
conservative. Indeed, while the pressure and shear
forces are treated as uniform per element in the cur-
rent beam formulation, the displacement is supported
by cubic polynomials which is not consistent with the
finite-volume formulation.

On the other hand, the explicit simulation using the
finite-volume structural solver is convergent but the re-
quired time-step to provide stability is about 105 times
smaller than implicit simulations (see case G in Ta-
ble 1). This is explained by the fact that the stability
constraint within the solid is closely related to the ve-
locity of sound which is very high when compared to
the characteristic velocities involved in the flow field.
Therefore, even though this explicit FSI scheme is
completely matrix-free, the overhead associated to the
very small time-step is too much restrictive for that
method to be efficient when dealing with hardly com-
pressible solids.

Of course, differences in the numerical results between

Table 2: Relative simulation times for case D
f t < 0.125 f t > 0.125

TS 0.00353 0.00659
TF 0.645 0.839

TFSI 1 1
TFSI/(TS +TF) 1.54 1.18



each simulation are to be expected since different mod-
els are used. However, these differences remain small
since the differences between each model is subtle (see
last tow columns of Table 1 as well as Fig. 3 and
Fig. 4). Because the barotropic model allows pres-
sure waves to develop, it is instructive to look at the
pressure coefficient fields of the simulations which are
defined as:

Cp =
p− p∞

1
2 ρ fU2

∞

. (17)

Indeed, a pressure wave associated to the initial impul-
sion is present in simulations using this model (Fig. 2).
However, as expected, this pressure wave dissipates
with time since it is closely related to the impulsive
start-up. Indeed, Fig. 3 shows that no pressure waves
are present after the initial few time-steps and that the
pressure field is not significantly affected by the use of
a barotropic model since Ma is small.

Moreover, the calculation of force coefficients remains
unaffected as it is shown in Fig. 4. Secondly, the
time-step size still has a repercussion on simulations
exhibiting a pressure wave since the time-step is not
small enough to capture this wave accurately (the time-
step size is adjusted to the flow velocity). However,
this is not a concern here since we try to mimic incom-
pressible flows. Indeed, Fig. 2 shows that when the
pressure wave is damped out by a larger time-step, the
pressure field approaches its incompressible counter-
part.

Lastly, the difference in results between the beam
model and the general solid model appears to be neg-
ligible for practical purposes (see Table 1). However,
the beam model proved to be numerically much more
efficient. This can be explained by two reasons:

• the beam model contains less degrees of freedom
(obviously);

• the beam model uses a Newton-Raphson lin-
earization.

The segregated finite-volume solid solver would be an
appropriate choice for cases where the time scale asso-
ciated to velocity of sound is close to the characteristic
time scales of the flow, which is rarely the case. Other-
wise, a fully coupled structural solver with possibly a
Newton-Raphson linearization would be more appro-
priate for general 3D geometries.

As it was stated earlier, this oscillating flapping
plate problem represents a propulsion device involving
strong fluid-solid interaction. The thrust coefficient is

(a) Case A

(b) Case D

(c) Case E

Figure 2: Far-field pressure coefficient near the begin-
ning of the simulation ( f t = 0.025).

defined by:

CT,LE = − Fx
1
2 ρ fU2

∞c
,

where Fx is the x component of the force per unit depth
on the driving mechanism located on the leading edge.
Therefore, that force is the structural reaction on the



(a) Case A

(b) Case D

(c) Case E

Figure 3: Pressure coefficient a long time after the
start-up ( f t = 5.75).

driving mechanism, which includes a component as-
sociated to the inertia of the plate and a component
associated to external aerodynamic forces. In order to
establish a comparison, the aerodynamic thrust coef-
ficient can be obtained by using the same definition
while replacing the structural reaction with the aero-
dynamic force on the FSI interface. As it is shown

-0.5
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 5  5.2  5.4  5.6  5.8  6
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Case A
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Case E

Figure 4: Aerodynamic thrust coefficient of the whole
plate for the last simulation cycle using different mod-
els and parameters.
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Figure 5: Comparison between the structural reaction
on the LE and the aerodynamic force on the FSI inter-
face.

on Fig. 5, the aerodynamic thrust coefficient on the
FSI interface is almost the same as the structural thrust
coefficient on the leading edge. Furthermore, Fig. 6
shows that the plate deflection is closely related to the
pressure field. That confirms that the fluid-solid inter-
action is strong and that the plate inertia plays a sec-
ondary role. Lastly, it is interesting to observe how the
plate deflection acts as a passive pitching angle that
helps to orient the aerodynamic force in the direction
of the flow, thus improving the thrust of the plate (see
Fig. 5 and Fig. 6 at f t = 5.250 and f t = 5.750).

6 CONCLUSION

This paper shows that an artificial compressibility
source term in the pressure equation allows to stabilize
efficiently an implicit partitioned FSI scheme. Fur-
thermore, the use of physical compressibility through
the barotropic model allows to control the residual



f t = 5.125 f t = 5.625

f t = 5.250 f t = 5.750

f t = 5.375 f t = 5.875

f t = 5.500 f t = 6.000

Figure 6: Evolution of the pressure coefficient field.

of the artificial compressibility source term when the
convergence is harder to achieve. Moreover, the
barotropic model allows to build a completely explicit
FSI scheme.

Numerical experiments on the case of a flexible os-
cillating plate in propulsion regime involving strong
fluid-solid interaction are presented. It is shown that
the overhead of the implicit FSI procedure is very
small when compared to single field simulation times,
thus allowing to benefit from state-of-the-art optimized
technologies in both media. It is also demonstrated
that the barotropic model can be used efficiently to
model nearly incompressible flows. On the other hand,
the explicit scheme suffers from very restrictive stabil-
ity conditions.
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