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ABSTRACT

A numerical model for simulating self-sustained pitch-heave
oscillations of a NACA0012 airfoil undergoing coalescence
flutter is developed for high Reynolds number applications.
In the transitional Reynolds number regime, such oscilla-
tions have been observed experimentally and begin to be
documented. The two dimensional fluid-structure model of
the present study is implemented using OpenFOAM-2.1.x, an
open-source finite volume CFD code. Numerical results ob-
tained with simulations making use of the Spalart-Allmaras
turbulence model are compared to preliminary experimental
results. Laminar and SST k−ω simulations are also car-
ried out to investigate their qualitative and quantitative ef-
fects on the results. We find that results obtained with the
laminar calculations agree fairly well with experimental data
for both structural heave stiffnesses investigated. Results ob-
tained making use of the turbulence models agree well with
the experiments for the cases where the airfoil’s dynamics is
dominated by the structural stiffness, and the match is not as
good for the cases where the aerodynamic plays a more sig-
nificant role on the airfoil’s dynamics. Explanation for these
observations is provided as well as discussion on the valida-
tion status of the proposed FSI model.

1 INTRODUCTION

The fluid-structure interaction of an airfoil with it’s surround-
ing fluid is of great interest in the design process of several
devices. In the field of aeroelasticity, much effort has been
directed towards a better understanding of the flutter phenom-
ena combined with the development of effective predictive
techniques. Flutter is the result of a positive net exchange of
energy from the fluid to the structure. Accurate prediction of
this energy transfer is often crucial in order to avoid high am-
plitude structural vibrations of a system. In such cases, the
relative transfer of energy from the fluid must be kept small
when compared to the damping capacity of the apparatus.

Conversely, airfoils undergoing flutter could be conceived as
devices to harvest energy from an incoming fluid, thus trans-
forming the flapping airfoil into some sort of turbine. In such
cases, one would want the positive flux of energy from the
fluid to the structure to be maximized.

Following the pioneering work of McKinney and DeLaurier
[8] in the field of flapping airfoils turbines, significant re-
search on the subject has been performed by several groups
in the last decade with a general goal of optimizing the con-
cept. Doing so, the promising potential of flapping foils as
wind or hydrokinetic turbines has been confirmed both nu-
merically [3, 4] and experimentally [5] by the authors’ group.
In most cases, the rigid airfoil was mounted on a clever me-
chanical system in which the form and relation between the
pitching and heaving motions were enforced in such a way to
significantly increase the efficiency of the turbine [5]. Among
these systems, some involved a well designed mechanical
coupling between both motions which reduced the device to
a single degree of freedom. Whether one or two degrees of
freedom, optimization of the energy harvester has primarily
been achieved through a direct implicit or explicit control on
the shape and frequency of the airfoil’s motions in pitch and
heave.

Recently, some research groups reported promising results
concerning a simplified semi-passive version of the flapping
foil power generator. In these semi-passive systems, the
pitching motion of the foil is prescribed while the heave re-
sults naturally through the interaction of the foil with the flow
and the supporting mechanism [18, 19]. Energy harvesting
efficiencies up to 25% were reported, thus confirming the po-
tential of this simplified mechanism. According to Zhu et
al. [18] and to Kinsey et al. [3], the extraction of energy
is mainly attributable to the heave motion. This means that
the pitching motion produces or incurs modest input or out-
put of energy, which suggests the concept of a further sim-
plified fully passive system [17]. This idea that the pitching
motion can be fully autonomous in an energetic sense was
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experimentally [14] and numerically [6] validated by observ-
ing self-sustained pitching-only motion of the airfoil at tran-
sitional Reynolds numbers.

In the simplified fully passive system, both heave and pitch
are entirely determined through the fluid-structure interaction
between the foil, the flow and the elastic supports. This rela-
tively new idea offers significant mechanical advantages over
the preceding mechanisms at the cost of having no direct con-
trol over the motion of the foil. Reported results from Peng et
al. [11] with an efficiency up to 20% for a foil mounted on a
rotational spring and a linear damper undergoing large ampli-
tude cycle oscillations revealed the potential of this new form
of turbine, and further optimization of this passive system is
probably at reach. This optimization must be achieved by ad-
justing parameters of the apparatus having an indirect effect
on the motion of the foil, thus implying that an adequate un-
derstanding of the physical mechanisms through which each
parameter influences the motion is critical. Note here that
for the purpose of turbine applications, only cases for which
limit cycle oscillations (LCO) emerge are of interest. For
such cases, the airfoil oscillates in a non-chaotic way with
a single frequency for both motions (pitch and heave).

In the present study, the airfoil is elastically mounted on a
linear spring-damper base in heave and a rotational spring-
damper base in pitch. The airfoil is free to pitch and heave
independently: no mechanical linking is enforced between
both degrees of freedom. The resulting simplified fully pas-
sive system still offers enough adjustable parameters to sug-
gest that an adequate indirect control of the airfoil’s dynam-
ics is possible. The main objective of this paper is to develop
and validate an adequate CFD model of the problem for fu-
ture works optimizing the energy extraction efficiency of this
turbine concept. High Reynolds numbers being more repre-
sentative of a hydrokinetic turbine application, RANS turbu-
lence modeling is incorporated. A secondary objective of this
research is also to gain preliminary physical insight into the
physics at play. Limited experimental results from Mendes et
al. [9] and Poirel et al. [12, 15] in the transitional Reynolds
numbers regime are available for this specific setup and are
thus used to compare and validate the proposed numerical
approach.

2 PROBLEM MODELING

2.1 Aeroelastic Modeling

In the present implementation, the elastically mounted airfoil
is free to pitch around the z-axis and heave along the y-axis.
The motion is not possible in any other directions nor about
any other axis. As shown in Figure 1, the two degree-of-
freedom system consists of a rigid airfoil mounted on a pivot
about which the pitching motion (θ) is possible. Further, the

Figure 1: Schematic of the elastically mounted airfoil. Re-
produced from [13].

Figure 2: Simplified schematic of the elastically mounted air-
foil (not showing the sliding mechanism) with symbolic rep-
resentation of key parameters. Adapted from [7].

pivot is mounted on a sliding mechanism thus allowing the
heave motion (y). There is no mechanical linking between
the pitching and heaving motions. Instantaneous aerodynam-
ics as well as inertial effects are the only possible couplings.
It is worth noting that the heaving mass (mh) and pitching
mass (mp) of such a system do not need to be equal and this
must be taken into account. One can convinced oneself by
considering Figure 1 where the mass of the sliding mecha-
nism is not involved with the pitching of the airfoil.

The general equations of motion of such a system can be de-
rived starting with a summation of forces and moments ex-
erted on the airfoil (see Figure 2):

ΣFy =−L−Dh ẏ− kh y , (1)

ΣMz = Mea−Dθ θ̇− kθ θ , (2)
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where L is the aerodynamic lift (downward positive), Mea
is the aerodynamic moment about the elastic axis (clockwise
positive), kh and kθ are respectively the heave and torsional
spring stiffness coefficients, Dh and Dθ are respectively the
heave and torsional damping coefficients and the superscript
(·) denotes differentiation with respect to time.

It is also necessary to relate the instantaneous linear acceler-
ation of the airfoil at the center of mass (acm) to the instanta-
neous acceleration of the airfoil at the elastic axis (aea = ÿ):

~acm =~aea +
~̈
θ×~rcm−ea +

~̇
θ×
(
~̇
θ×~rcm−ea

)
, (3)

where ~rcm−ea is the instantaneous vector that extends from
the pivot point to the center of mass of the airfoil including all
rotating parts. This vector can be written using the variable xθ

defined as the distance between the pivot point and the center
of mass as shown in Figure 2:

~rcm−ea = xθ cos(θ) êi + xθ sin(θ) ê j . (4)

A simplified expression for acm can then be obtained and the
vectorial notation can be dropped since the linear acceleration
is solely along the y-axis:

acm = aea + θ̈ xθ cosθ− θ̇
2 xθ sinθ . (5)

It must be emphasized that the instantaneous acceleration of
the center of mass of the heave-only components (mh−mp)
is equal to the instantaneous acceleration of the airfoil at the
elastic axis (aea). One can convince oneself of this by sub-
stituting xθ = 0 in Eq. (5). In heave, it is possible to write
the summation of forces along the y-axis as the sum of forces
acting on both the pitching and non-pitching components sep-
arately:

ΣFy = {(mh−mp)aea}+{mp acm} . (6)

Combining Eqs. (1), (3) and (6), yields the final result:

−L = mh ÿ+mp
(
θ̈xθ cosθ− θ̇

2 xθ sinθ
)
+Dh ẏ+ kh y . (7)

The equation of motion in pitch can be derived in a more
straightforward way since the heave-only components do not
need to be considered in the analysis. The summation of mo-
ments exerted on the airfoil can be written as:

Σ~Mz = Iθ
~̈
θ+~rcm−ea×mp~aae , (8)

where Iθ is the moment of inertia about the elastic axis. Using
Eq. (4) in the right-hand side and using Eq. (2) in the left
hand side, the following result is obtained after dropping the
vectorial notation since all terms are along the z-axis:

Mae = Iθ θ̈+mp ÿ xθ cosθ+Dθ θ̇+ kθ θ . (9)

2.2 Computational Modeling

The aeroelastic problem is solved using OpenFOAM-2.1.x
[10], a finite volume open-source CFD code. The fluid flow
around the airfoil is assumed incompressible and viscous at
moderate to high Reynolds numbers. Further, volume forces
are neglected. Thus the governing equations of the 2D flow
are the mass and momentum conservation equations obtained
with the Reynold’s decomposition, here expressed using the
Einstein notation:

∂Ui

∂xi
= 0 , (10)

∂Ui

∂t
+U j

∂Ui

∂x j
=−1

ρ

∂p
∂xi

+(ν+νt)
∂2Ui

∂x2
j
, (11)

where νt is the turbulent kinematic viscosity provided by
the Spalart-Allmaras turbulence model unless otherwise in-
dicated. The PISO segregated algorithm is used in order to
efficiently couple pressure and velocity, resulting in a sig-
nificant reduction of computation time over a SIMPLE algo-
rithm. The transient term is discretized using a second order
backward implicit scheme. The convective term is discretized
using a second order scheme based on a linear upwind in-
terpolation. The diffusive term finally is discretized using
a second order scheme based on a linear interpolation and
uses an explicit non-orthogonal-limited surface normal gra-
dient scheme. The linear solver is a generalized geometric-
algebraic multigrid (GAMG) method for both the pressure
and momentum equations and a smooth solver using Gauss-
Seidel methods is used for the turbulence equation.

The flow solver must be coupled with the dynamics of the air-
foil in order to predict fully and accurately the present fluid-
structure interaction. This is achieved by using an algorithm
that performs the following calculations at each time step:

1. The external fluid flow is computed;

2. The instantaneous forces and moment exerted by the
flow on the airfoil are computed;

3. The equations of motion are solved and the new airfoil
positions and velocities are updated;

4. The calculation continues to the next time step.

In all simulations, unless otherwise noted, a time step provid-
ing a minimum of 3000 steps per oscillatory cycle and 200
steps per convective time unit is used according to the fol-
lowing equation:

∆T = min
{

1
3000 f

,
c

200 U∞

}
, (12)

where f is the frequency of oscillation, c is the chord length
and U∞ is the freestream velocity. Validation of this time step
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size is presented in §3. Further, a RMS convergence crite-
rion of 1× 10−5 is enforced on pressure residuals, while the
criterion is 1×10−6 for momentum and turbulence.

The pitching and heaving airfoil problem is here solved in a
non-inertial frame of reference. The translational motion of
the airfoil is taken into account by the usage of a momentum
source term and unsteady boundary conditions on the veloc-
ity. The pitching motion requires moving body and moving
grid capabilities.

Dynamic mesh capabilities are included in OpenFOAM. A
non-conformal sliding interface is used in this work to take
into account the pitching motion of the solid body. This
strategy avoids deforming meshes or remeshing techniques,
which could considerably slow down the calculation. As
shown in Figure 3, the central circular portion of the mesh
is free to rotate around the z-axis. This dynamic grid has a
radius of exactly two chords while the entire grid covers a
domain of 100 × 100 chords. At the interface, an interpo-
lation scheme is required and this is achieved by using the
native OpenFOAM Arbitrary Mesh Interface (AMI) [1]. This
dynamic mesh technique was validated in the past by Kin-
sey et al. [3] and Lapointe et al. [6] and the accuracy of the
method was thoroughly confirmed.

The computational domain is shown in Figure 3. A time-
varying but uniform velocity is prescribed at all 3 inlet planes
while a constant mean static pressure is prescribed at the out-
let. Varying inlet velocities are required to take into account
the instantaneous heaving motion of the airfoil. Further, a
viscosity ratio of νt/ν = 1 is set at all inlets to correspond to
negligeable turbulence upstream of the airfoil.

The 2D mesh shown is built with approximately 65 000 cells,
having close to 450 points on the airfoil to provide enough
near-body resolution and capture sufficiently the physics of
the flow. The first cell thickness is set in order to obtain
y+≈ 1 on the airfoil surface throughout the simulations for all
incoming flow velocities considered. It must be clear that the
mesh used for the simulations is the same at all flow veloci-
ties, meaning that the first cell thickness was chosen relative
to the most restrictive case considered here (Re=120 000).

In all cases, the simulations are initialized with a perturbed
airfoil by specifying an initial heaving velocity (ẏ0). All other
initial values are set to zero, namely y0 = 0, θ0 = 0 and θ̇0 = 0.
The parameter ẏ0 is set to approximately 5-10% of U∞. This
allows the transient period to be shortened to approximately
10 to 25 cycles, depending mainly on the freestream velocity.
Other parameters of the apparatus also influence the duration
of the transient regime and care must be taken in order to
reduce computation time. The typical runtime for a whole
simulation is about 75 hours on eight Intel Nehalem-EP pro-
cessors.
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Figure 3: Computational domain and grid details (≈ 65 000
cells).

2.3 Turbulence Modeling

In this study, turbulence closure is achieved by the Boussi-
nesq eddy-viscosity approximation. The eddy viscosity νt
is calculated using the Spalart-Allmaras (SA) RANS model.
The latter is a one equation turbulence model for the modified
turbulent viscosity ν̃. The model used is the version originally
presented by the authors in 1994 [16].

Previous works at the LMFN such as [7] and [2] on pitch-
heave oscillations of an airfoil validated the use of the SA tur-
bulence model for this purpose. They found that although this
model does not always provide excellent quantitative agree-
ment with experimental data, the qualitative results and the
trends are typically fairly good. The SA model was developed
based on aerodynamics considerations of stationary bodies.
As for any RANS model, great care must be taken when mas-
sive separation is encountered and the reader must keep in
mind the usual limitations of RANS simulations. It is recalled
that this study is for the moment primarily concerned with the
general trends of the physical responses. For this specific pur-
pose, RANS simulations are justified.

In this paper, limited laminar computations (no turbulence
model) and SST k-ω computations have also been performed
for comparison with results obtained with SA. In the case of
SST k-ω, various inlet’s turbulence intensity have been used
and very little changes were observed for an increase or de-
crease of one order of magnitude of the inlets’ turbulence
intensity. A fairly low inlet turbulence intensity of approx-
imately 0.2% has finally been retained for the calculations.
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Time step CL (%) CM (%) Cp (%)
Coarse 0.72 4.23 2.62

Baseline – – –
Fine 0.01 0.22 0.96

Table 1: Maximum variation over one complete cycle of os-
cillation for different time steps.

Mesh CL (%) CM (%) Cp (%)
Coarse 0.78 4.35 6.60

Baseline – – –
Fine 0.57 2.70 5.02

Table 2: Maximum variation over one complete cycle of os-
cillation for different grids.

3 NUMERICAL VALIDATION

Time step size independence was demonstrated by varying
the time step from the baseline value used throughout the sim-
ulations. A fine time step providing 26 000 steps per cycle of
oscillation and 2400 steps per convective time unit did not af-
fect noticeably the results. Variations of less than 0.25% were
observed on the amplitudes of oscillation (θmax and ymax). A
coarser time step providing 500 steps per cycle of oscillation
and 50 steps per convective time unit was also investigated.
Variations of 0.5% were observed on the amplitudes of os-
cillation. The maximum variation on the lift coefficient (CL),
on the moment coefficient (CM) and on the power coefficient
(Cp) are shown in Table 1.

For the RMS convergence criterion, refinement of one order
of magnitude compared to the baseline case previously de-
scribed in §2 did not significantly affect any of the parame-
ters recorded. A similar conclusion is drawn for a criterion
coarser by an order of magnitude. It could be justified to use
the coarser values although this idea was not retained in this
paper.

Mesh validation was achieved with a run on a coarse grid of
approximately 30 000 cells (250 points on the airfoil) and a
run on a refined grid of approximately 120 000 cells (650
points on the airfoil). For the refined grid, differences of less
than 1% were observed on the recorded amplitudes of motion
while the observed differences are closer to 2% for the coarser
grid. More results are presented in Table 2. We conclude that
the baseline mesh provides enough resolution for the intended
purpose of this paper.

At last, since all computations have been run in parallel on
8 cores, the results of a serial computation were compared
to those of a parallel computation (8 cores). All quantities
checked matched nearly perfectly.

Parameter Value
c 0.156 m

xea 0.186 c
xθ 0.095 c
Iθ 0.00135 kg·m2

kθ 0.3 N·m/rad
Dθ 0.002 N·s/rad
mh 2.5 kg
mp 0.77 kg

Table 3: Fixed parameters of the experimental apparatus
from Poirel and Mendes [15, 12, 9]
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Figure 4: Evolution of the damping ratio in heave as a func-
tion of the maximum cyclic amplitude (from experimental
data of [12]).

4 RESULTS

Experimental results from Mendes et al. [9] and Poirel et al.
[15, 12] in the transitional Reynolds number regime are avail-
able for the setup previously described. The specific parame-
ters indicated in Table 3 are relative to the experimental setup
used at the RMC in Kingston. Results are available for a large
and a low heave stiffness, respectively kh = 1484 N/m and
kh = 800 N/m. Based on free-decay experimental tests, the
damping ratio in heave of the apparatus behaves in a highly
non-linear way as shown in Figure 4. The damping ratios on
this figure were calculated using the logarithmic decrement
method and are based on the response of the airfoil during a
no-flow, free-decay test for which the pitch angle was blocked
at θ = 0 deg. Raw data of the free decay tests were provided
by Prof. Poirel [12].
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For the sake of this paper, the damping ratio in heave
is considered to be constant and equal to the asymptotic
value for large amplitudes, which yields a damping coeffi-
cient Dh = 2 Ns/m associated to a damping ratio of 0.0225.
This hypothesis can be revisited and discussed a posteriori
once the heaving amplitudes of the resulting oscillations are
known.

4.1 Large Heave Stiffness

With the aforementioned parameters, numerical simulations
have been performed for freestream inlet velocities similar to
those of the wind tunnel ranging from 4.68 m/s (Re = 50 000)
to 11.23 m/s (Re = 120 000). Experimental and numerical
results for a large heave stiffness are gathered on Figures
5 and 6. As one can see, the match between experimental
and numerical frequencies is excellent for all simulations. A
single oscillatory frequency emerges for this 2DOF appara-
tus. This is explained by the specific type of flutter observed,
which is due to the coalescence of both pitching and heav-
ing aeroelastic modal frequencies [9, 15]. The amplitudes of
oscillation resulting from this dynamic instability grow ex-
ponentially untill structural forces or non-linear aerodynamic
obstruct the growth and make LCO appear.

Experimentally and numerically, the apparatus oscillates at a
frequency nearly identical to the calculated structural natu-
ral frequency in heave. It is clear that the airfoil’s motion is
heave dominated in this configuration. Furthermore, the near
overlap of the structural natural frequency and the LCO fre-
quency indicates that the aerodynamics plays a minor role in
heave, it’s effect being dominated by the structural stiffness of
the apparatus. This does not imply unsignificant aerodynamic
forces and moments, but suggests that the airfoil’s motion is
mainly driven by the linear springs in heave.

Indeed, the aerodynamic stiffening is significant on the rota-
tional motion of the airfoil. It accounts for the coalescence
of the oscillatory frequencies. Outside of the experimental
range, the predicted frequencies suggest that these conclu-
sions still hold true. The structural stiffness being dominant
for this specific configuration of the apparatus justifies the la-
bel "large heave stiffness" previously attributed.

As shown in Figure 6, the amplitudes of the predicted ge-
ometric pitching angle θ compares well with the observed
amplitudes over the limited experimental range. Error bars
are displayed on the laminar results as a way to quantify the
fluctuations of the predicted amplitudes from one cycle to the
other. The average amplitude is therefore displayed with er-
ror bars extending up to the maximum and minimum ampli-
tudes recorded. Results obtained with both turbulence models
predicted constant amplitudes once the transitory period was
terminated, typically after 10 to 25 cycles.

Laminar simulations predict amplitudes slightly lower or
equal to those predicted with the SA turbulence model. It
must be noted that the differences increase as the Reynolds
number grows. The same can be said relative to the heav-
ing amplitude. Unfortunately, the experimental uncertainties
over the results and over the apparatus’ parameters were not
addressed in the referred works.

4.2 Low Heave Stiffness

For the case of a low heave stiffness, the experimental and
numerical data are shown on Figures 7, 8 and 9. Note here
that the effective angle of attack αe f f is used instead of the
geometric angle θ to quantify the pitching amplitude. This
is indeed required for comparison with experimental data for
which the geometric angle was not provided. The effective
angle of attack is calculated as:

αe f f = θ+ arctan(ẏ/U∞) (13)

Results of simulations performed by the authors based on the
work from Lapointe et al. [7] are also included to better illus-
trate the significant effect of using unequal masses in heave
and pitch. The trends of the results based on the work from
Lapointe et al. (labeled as mh = mp) are clearly contrast-
ing from the experimental results’ trends. The model from
Lapointe et al. [7] failed to match the results from Mendes
and Poirel [9] since it lacked the flexibility of setting differ-
ent heaving and pitching masses. The results obtained using
this model would be accurate for actual equal masses in pitch
and heave which is not the case with the RMC’s setup.

The quite different trends obtained with mp = mh are at-
tributable to the inertial coupling between pitching and heav-
ing associated with the elastic axis being offset from the heav-
ing center of mass. As a result, a vertical acceleration induces
a moment on the airfoil. Further, a pitching motion or a rota-
tional acceleration may induce a vertical force on the airfoil.
As can be seen in Eqs. (7) and (9), these forces and moments
are proportional to the pitching mass. A model lacking the
ability to set mp and mh independently would therefore al-
ways set these forces to be proportional to the heaving mass,
thus overpredicting the inertial coupling. Having two distinct
masses in heave and pitch clearly provides one more way to
control the dynamics of the airfoil for future optimizations.

Present results making use of distinct heaving and pitching
masses compare well in frequency to the experimental results.
For the simulations making use of the SA turbulence model,
the match is excellent in the lower range of Reynolds num-
bers, and a slight discrepancy appears with growing Reynolds
number. The predicted amplitudes of the effective angle of at-
tack with SA show a trend which agrees well with the exper-
iment up to Re = 80 000 although all predicted values are
fairly low. As observed for the larger heave stiffness, the
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trend becomes different from the experimental results as the
Reynolds number is increased. The same conclusions can be
drawn relative to the simulations performed with the SST k-ω
turbulence model. Actual results also suggest that the great-
est differences between results predicted by both turbulence
models are for the higher range of Reynolds numbers. None
provides a qualitative nor quantitative agreement with exper-
imental results better than the other.

Further simulations with different damping coefficients in
heave and pitch indicate that the uncertainties relative to
these parameters (associated to the non-linear behavior of
the experimental damping) does not fully account for the
mismatches. Variations of the heaving damping coefficient
within a range that still allows sustained oscillations did not
prove to have a significant effect on the oscillatory frequency
as shown on Figure 10. Note that the label strong damping
refers to Dh = 3.5 Ns/m. Conversely, the maximum effective
angle of attack exhibits some variations following a change of
the damping coefficient in heave as shown in Figure 11, but,
again, cannot explain the mismatch alone. A simulation with
no structural damping showed that the predicted amplitudes
remain well below the experimental values for most of the
considered Reynolds numbers range. This strongly suggests
that the uncertainties over the heave damping do not account
for the low predicted amplitudes. Further, it appears that a
variation of the damping coefficient has an impact which is
smaller with an increase of the Reynolds number.

In counterpart, laminar simulations display a behavior more
representative of the experimental results. The predicted fre-
quencies agree very well with the experiments. The predicted
amplitudes of the effective angle of attack are much more
representative of the experimental values and are generally
higher that those predicted with the SA turbulence model.

The match with experimental results being well improved by
a laminar calculation suggests that the turbulence model fails
at predicting important features of the flow, probably because
it produces too much turbulent viscosity in the higher range
of Reynolds numbers. This could explain the growing dis-
crepancy in the trend of the results obtained with SA as the
Reynolds number is increased. This idea is confirmed by an
analysis of the νt/ν contours close to the airfoil. As shown
in Figure 12, the ratio of turbulent viscosity in the attached
boundary layer on the upper side is much higher than one
would expect, especially for Re = 120 000. Contours of vor-
ticity are displayed on Figure 13. The vorticity field is found
to be very different for a laminar simulation than with the SA
turbulence model. The effective body is considerably thinner
for the laminar simulation. The Reynolds number also has
a significant effect on the vorticity field, but comparison is
more difficult since the dynamics of the airfoil is also modi-
fied with the Reynolds number.

For this low heave stiffness, the experimental and numerically
predicted oscillation frequencies are found to be distinct from
both the pitching and heaving natural frequencies. Aerody-
namic stiffening is therefore present and active both in pitch
and in heave. This suggests that the aerodynamics is far more
dominant here than it was with the large heave stiffness case.
Further, the fluctuations of predicted amplitudes with lam-
inar simulations being greater with the low heave stiffness
case suggests the same conclusion. This could partially ex-
plain why the turbulence model has a more significant effect
with a low heave stiffness. If the motion is dominated by the
structural stiffness, discrepancy in the prediction of the flow
features has a weaker impact.

5 CONCLUSION

A numerical model for simulating self-sustained pitch-heave
oscillations of an airfoil undergoing coalescence flutter was
developed and put to the test. In the range of transitional
Reynolds numbers, laminar results display a behavior more
representative of the experimental results than would be pre-
dicted with the SA or SST k−ω turbulence model, especially
for the case where the aerodynamics is dominant. This sug-
gests that the model could be improved by making use of a
transitional turbulence model more appropriate to the flow
regime considered. On the other hand, the developed model
displays a behavior which provides enough confidence that it
could adequately be used at higher Reynolds numbers more
representative of a hydrokinetic turbine, which is the intended
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Figure 8: Predicted frequencies compared to experimental measurements and calculated natural structural frequencies
(kh = 800 N/m).
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Figure 9: Predicted effective angles of attack compared to experimental measurements (kh = 800 N/m). Error bars on the
laminar results show the range of variation of the oscillation amplitudes from cycle to cycle.
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Figure 10: Effect of the modulation of the heaving damping
on the oscillatory frequency (kh = 800 N/m).
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Figure 11: Effect of the modulation of the heaving damping
on the effective angle of attack’s amplitude (kh = 800 N/m).

purpose in a near future. Further optimization could also be
achieved with a modulation of the damping coefficients rep-
resentative of the apparatus simulated to account for the non-
linearities observed on the set-up. This would also require
the viscous damping to be subtracted from the measured total
damping in order to obtain a good estimation of the structural
damping alone as a function of the amplitude of oscillation.
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