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Abstract

This paper focuses on the interaction and the contribution of the three modes of heat transfer in a stack of parallelogrammic air-
filled cavities separated by solid partition walls. The thermal diode potential and the high insulating character of such structures
are the main interests of this investigation. The inclination angle, the emissivity of the inner boundaries of the cavity as well as the
thickness and the thermal conductivity of the partition walls are the parameters varied in this study. Their respective contributions
to the total Nusselt number are assessed. The two-dimensional fluid cavities studied in this work are characterized by an aspect ratio
of 1. The vertical boundaries of the enclosures are considered isothermal at specified hot and cold temperatures, and the inclination
angle of the partition walls is varied from −60◦ to 60◦ with respect to the horizontal. Numerical simulations are carried out using
a finite-volume solver. It is shown that the total Nusselt number is highly sensitive to the emissivity of the inner boundaries of
the cavities and thus, to the heat transfer through radiation. Moreover, it is found that the conduction heat transfer in the partition
walls also plays an important role in most of the cases investigated. The importance of these two modes of heat transfer results
in a significant decrease in both the thermal diode potential and the insulating character of the enclosures compared to the classic
case for which only convection heat transfer is considered. Nonetheless, this study suggests that a vertical structure composed of a
stack of parallelogrammic air-filled enclosures could be successfully designed to provide a practical and economically interesting
alternative to polystyrene panels.
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1. Introduction

Over the past decades, several investigations have been di-
rected towards the development of approximate solution meth-
ods for applications involving natural convection. The particu-
lar case of free convection in cavities, which is quite prevalent
in practice, has mainly retained the attention. Many authors
have performed theoretical studies on natural convection heat
transfer across cavities [1, 2, 3]. Early on in the numerical
simulation era, the differentially heated square cavity became
a classic numerical problem.

Indeed, natural convection in closed cavities has been inves-
tigated in numerous occasions and many different geometries
have been studied over the years. For example, many authors
have oriented their research towards cylindrical shapes [4, 5],
while others worked on triangular cavities [6, 7]. Nevertheless,
the most widely studied geometry in the literature remains the
2D square, rectangular or parallelogrammic cavity.

For these types of cavity, the effects of many parameters,
such as the Rayleigh number (Ra), the Prandtl number (Pr) and
the aspect ratio (h/L), have already been extensively studied
[1, 8, 9, 10, 11]. Generally, a higher Rayleigh number results in
an increased heat transfer across the cavity and can eventually
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lead to unsteady phenomena and turbulence, while moderate
variations of the Prandtl number does not significantly influ-
ence the general behavior of the flow in the cavity [12, 13, 14].

From a more practical point of view, several papers have
dealt with the impact of the inclination angle (φ) of the partition
walls bounding the upper and lower parts of the parallelogram-
mic cavity [10, 15, 16, 17, 18]. It has been shown that the con-
vection heat transfer is highly affected by the inclination angle
of the partition walls. As shown in Figure 1, the convective mo-
tion of the fluid is much more important when the vertical hot
boundary is located below the vertical cold boundary (positive
φ), while a vertical hot boundary above the cold one (negative
φ) can even lead to a complete stratification in the cavity and,
ultimately, to essentially pure conduction heat transfer in a stag-
nant fluid. Therefore, the heat transfer through a given inclined
cavity has two different values depending on the side of the hot
boundary. This attractive behavior has been confirmed by many
authors who refer to the parallelogrammic cavity as a thermal
diode cavity [15, 18, 19]. Indeed, several numerical and exper-
imental studies have shown that the convection Nusselt number
is strongly reduced when the inclination angle (φ) is negative
[10, 11, 17].

In addition to the applications that could benefit from the
thermal diode behavior of such cavities, it could also be in-
teresting in practice as an insulating wall. The idea of using
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Nomenclature

Variables
eg unit gravity vector = (0,−1)

Fi j view factor matrix

g gravitational acceleration [ms−2]

h height of the hot and the cold boundaries of the cav-
ity [m]

J radiosity [Wm−2]

k f thermal conductivity of the fluid [Wm−1K−1]

ks thermal conductivity of the solid partition walls
[Wm−1K−1]

L distance between the hot and the cold boundaries [m]

p pressure [Pa]

n local unit vector normal to a boundary and directed
towards the considered region

q′cond mean conduction heat transfer rate per unit depth in
the partition walls, Equation (10) [Wm−1]

q′conv mean convection heat transfer rate per unit depth in
the fluid cavity, Equation (8) [Wm−1]

q′rad mean radiation heat transfer rate per unit depth in the
fluid cavity, Equation (9) [Wm−1]

q′re f reference conduction heat transfer rate per unit depth
in the enclosure, Equation (7) [Wm−1]

q′′r radiative thermal heat flux, Equation (4) [Wm−2]

t thickness of the solid partition walls [m]

T temperature [K]

T0 mean temperature = (TH + TC)/2 [K]

TC temperature of the cold boundary [K]

TH temperature of the hot boundary [K]

u velocity vector = (u, v) [ms−1]

x position vector = (x, y) [m]

α thermal diffusivity of the fluid [m2s−1]

β coefficient of volumetric expansion of the fluid [K−1]

θ temperature difference scale = TH − TC [K]

ν kinematic viscosity [m2s−1]

ρ density [kgm−3]

σ Stefan-Boltzmann constant

[Wm−2K−4]

ψ stream function [m2s−1]

Dimensionless physical parameters
h/L aspect ratio of the cavity

ks/k f thermal conductivity ratio

Pr Prandtl number = ν/α

Ra Rayleigh number = gβθL3/αν

t/L thickness ratio of the solid partition walls

T0
∗ normalized mean temperature = T0/θ

ε emissivity
σT 4

0
k f θ/L

relative radiation level

φ inclination angle of the solid partition walls with re-
spect to the horizontal

Dimensionless coefficients
Nu Nusselt number

ξ60 thermal diode coefficient

Figure 1: Temperature fields (colored background) and stream functions (black
lines, ∆ψ∗ = 0.0041) for air-filled cavities with adiabatic upper and lower
boundaries and isothermal vertical boundaries (the hot boundary is located on
the left).

a stack of piled-up air-filled cavities instead of a full panel of
insulating material is very attractive. Indeed, a wall composed
of air-filled cavities that would have the same thermal proper-
ties as an insulating material would have major economic and
environmental advantages due to the reduction of the amount of
material needed. To investigate this possibility, the three modes
of heat transfer must be considered in a structure composed of
multiple piled-up cavities.

Most of the studies in the field have investigated the case
of a single cavity with adiabatic upper and lower boundaries.
Only a few authors have considered more than one fluid cavities
[11, 18, 20, 21], either fully or partially separated by conductive
solid partition walls, even if one expects to use walls composed
of several such cavities. Moreover, most of the studies that have
been performed on the thermal diode cavity have not considered
radiation even if it has been shown that this heat transfer mode
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Figure 2: Sketch of the infinite stack of parallelogrammic air-filled cavities
separated by conductive solid partition walls.

can become quite significant [21, 22, 23]. To the authors’ best
knowledge, the study of multiple cavities involving the three
modes of heat transfer has not yet been investigated in the liter-
ature despite its relevance in many applications.

The objective of the present study is to assess the individual
contribution of each of the three heat transfer modes, as well
as how they interact with each other in an infinite stack of par-
allelogrammic cavities separated by conductive solid partition
walls, as shown in Figure 2. This general problem is governed
by nine dimensionless parameters (see nomenclature), which
makes it a formidable challenge. In this initial phase of our in-
vestigation, we have fixed five of these nine parameters to focus
on the general trends first. Thus, we have varied the inclination
angle (φ), the thickness and the thermal conductivity ratios of
the solid partition walls (t/L and ks/k f ) and the emissivity of the
inner boundaries of the cavities (ε) in order to show their effect
on the thermal diode potential and on the total heat transfer.

In order to analyze the importance and the contribution of the
three heat transfer modes separately, we proceed in three steps.
First, a single cavity with adiabatic upper and lower bound-
aries is presented (Figure 3a). The pure-convection heat trans-
fer is briefly discussed using a cavity without partition walls
and without considering radiation. This simple case, which has
been studied thoroughly in the literature, is used as a reference
to evaluate the impact of the other heat transfer modes. In a sec-
ond step, the effects of considering conductive partition walls
and radiating inner boundaries are then investigated separately
before combining the three modes in a single enclosure (Figure
3b). It is shown that the thermal diode potential is drastically
reduced when conduction and radiation are taken into account.

Figure 3: Schematic representation of the three physical domains investigated:
a) Single adiabatic cavity, b) Single adiabatic enclosure with solid partition
walls, c) Infinite structure of piled-up enclosures (with periodicity conditions
applied at the junction between light gray and dark gray regions).

In the third step, the thermal diode potential and the insulating
performances of an infinite structure of piled-up enclosures is
presented.

2. Physical case

As stated previously, this investigation aims at quantifying
the relative contribution of each of the three modes of heat
transfer and their interaction in an infinite stack of enclosures
composed of air-filled cavities and solid partition walls. In a
more practical point of view, this work also aims at determin-
ing the thermal diode and insulating potentials of such a struc-
ture. Three different physical domains are considered in order
to be able to discriminate the individual contribution of each
heat transfer mode. As shown in Figure 3, the first domain (a)
consists of a single air-filled cavity with adiabatic upper and
lower boundaries. The second one (b) is also a single adiabatic
cavity, but solid partition walls are added to the geometry in
order to consider the conduction heat transfer taking place in
these solid regions. The third physical domain (c) is an infinite
stack of enclosures composed of a series of air-filled cavities
and solid partition walls. This infinite structure can be repre-
sented by a single enclosure (including two half partition walls)
using periodicity conditions imposed at the junction between
light gray and dark gray regions in the partition walls of Figure
3c. It thus corresponds to the domain of Figure 3b with periodic
boundary conditions instead of adiabatic boundary conditions.
Note that the term “cavity” is used to describe the fluid region
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of the enclosure (without considering the solid regions) while
the term “enclosure” refers to the fluid cavity along with the
solid partition walls.

In these two-dimensional geometries, the height of the air-
filled cavities (h) and the distance between the hot and the
cold vertical boundaries (L) remain equal to each other, lead-
ing to a fixed aspect ratio h/L = 1. A Rayleigh number of
Ra = 5×105 is considered (which represents a temperature dif-
ference of θ = 28.5 K across a L = 5 cm cavity filled with air)
together with a Prandtl number of Pr = 0.71. Two of the di-
mensionless parameters governing radiation are fixed, namely
the relative radiation level σT 4

0/(k f θ/L) = 24.65 and the nor-
malized mean temperature T ∗0 = 9.75. These two parameters
are defined in section 2.1. The energy transfer occurs between
the vertical boundaries which are maintained respectively at a
hot (TH) and a cold (TC) specified temperature. The upper and
lower boundaries of the enclosures can be inclined by an angle
between −60◦ to 60◦ with respect to the x-axis.

Two values of dimensionless thicknesses of the partition
walls (t/L = 0.01 and 0.1) and two values of thermal conductiv-
ity ratios (ks/k f = 1 and 10) are tested. Regarding the radiation
heat transfer, three different emissivity values (ε = 0, 0.1 and
0.9) are considered. Lastly, the heat transfer calculations are
carried out for five different inclination angles (φ = −60◦, −30◦,
0◦, 30◦ and 60◦).

2.1. Mathematical formulation

2.1.1. Governing equations
Considering deep (in the z-direction) parallelogrammic cav-

ities, the physics pertaining to such cavity is assumed two-
dimensional. Fusegi & al. [24] compared the results of a three-
dimensional cavity with a two-dimensional one. They showed
that even if there is a transverse z-component velocity in the
3D cavity, it is one order of magnitude smaller than the compo-
nents in the other directions and it does not significantly affect
the total heat transfer at the Rayleigh number considered in this
study. Moreover, to validate the present 2D assumption, we
have carried out simulations in three-dimensional enclosures
with a depth five times larger than their length (5L) for many
of the parametric cases in this study. We have found that the
end effects occurring in the cavity are typically confined within
a distance L from the ends and that they affect only marginally
the physical fields (velocity and temperature) and the total heat
transfer in the enclosure.

Furthermore, it has been shown that for a Rayleigh number
smaller than 1.3× 107 (with Pr = 0.71 and h/L = 1), such as in
this study, the flow in the cavities is laminar and steady [10]. As
a matter of validation, three-dimensional unsteady simulations
in parallelipipedic enclosures have been computed. Our results
showed that the flow is indeed steady, thereby allowing us to
carry out steady state numerical simulations.

For natural convection of air in cavities of that kind and under
a temperature difference smaller than 30 K, the validity of the
Boussinesq approximation that is used here has already been
verified [11, 18]. Air inside the enclosures is therefore consid-
ered incompressible with constant physical properties, except

for the density variations in the buoyancy term. The govern-
ing equations in the fluid region are thus the continuity (1), the
Navier-Stokes (2) and the energy (3) equations [25]:

∇∗ · u∗ = 0, (1)

u∗ · ∇∗u∗ = −∇∗p∗ +

(
Pr
Ra

)1/2

∇∗
2u∗ +

(
T ∗ − T0

∗) eg, (2)

u∗ · ∇∗T ∗ =
1

(Ra Pr)1/2 ∇
∗2T ∗, (3)

where all the star variables and operators above are dimension-
less, being normalized by their appropriate reference quantity:
reference length L, temperature scale θ = TH − TC , reference
velocity

√
βθgL and pressure scale ρβθgL.

In Equation 2, T ∗0 is the normalized mean temperature de-
fined as (TH + TC)/2θ. Regarding the conduction in the solid
partition walls, it is governed by Equation 3 where the velocity
(u∗) is equal to zero. In both the fluid and the solid regions, the
thermal properties are assumed to be uniform and constant.

2.1.2. Boundary conditions
The velocity (u∗) is set to zero on each boundary of the cav-

ity (no-slip condition). Moreover, for all the parametric cases
investigated, the dimensionless temperature of the vertical hot
boundary (T ∗H), located on the left side of the enclosure, is equal
to 10.25 (T ∗H − T ∗0 = 0.5), while the dimensionless temperature
of the vertical cold boundary (T ∗C) located on the right side is
9.25 (T ∗C − T ∗0 = −0.5). The thermal conditions for the other
boundaries of the enclosure depend on the physical domain that
is considered. For the domain shown in Figure 3a and 3b, the
uppermost and lowermost boundaries of the enclosure are con-
sidered adiabatic. For the domain shown in Figure 3c, period-
icity conditions are applied to the upper and the lower bound-
aries of the enclosure for both the temperature and the tempera-
ture gradient. For cases involving radiation, air is considered as
a non-participating medium, so that the radiation heat transfer
only occurs on the inner boundaries of the cavities. Making the
assumptions that these boundaries are opaque, gray and diffu-
sive, the dimensionless radiation heat transfer is therefore given
by:

q′′r
∗

=
ε

1 − ε

( T ∗

T0
∗

)4

− J∗
 , (4)

where ε is the emissivity and J∗ is the dimensionless radiosity.
Both q′′r and J have been normalized using a reference radiative
heat flux σ T0

4.
The radiosity is computed using the following relation for the

ith panel along each inner boundary of the cavity:

εi

1 − εi
Ji
∗ +

N∑
j=1

Fi j (Ji
∗ − J j

∗) =
εi

1 − εi

(
Ti
∗

T0
∗

)4

, (5)
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where N is the total number of panels on the inner boundary
coinciding with the fluid finite volume edges along that bound-
ary and Fi j is the view factor matrix representing the portion
of the radiating energy leaving boundary i that is intercepted
by boundary j. In the numerical simulations, a radiosity value
has been computed for each element of the fluid mesh that is
in contact with an inner boundary of the cavity. In the present
study, the normalized mean temperature (T ∗0 ) is set to 9.75, cor-
responding, for example, to a mean temperature (T0) of 278 K
and a temperature difference (θ) of 28.5 K.

At the junction between the fluid and the solid regions, the
energy must be conserved, meaning that the following equation
is satisfied:(

∂T ∗

∂n∗

)
f luid

+
σT 4

0

k f θ/L
q′′r
∗

= −
ks

k f

(
∂T ∗

∂n∗

)
solid

, (6)

where n∗ is the normalized local unit vector normal to the
boundary that is directed towards the considered region. Equa-
tion (6) introduces two of the nine dimensionless parame-
ters, namely the parameter σT 4

0/(k f θ/L) and the parameter
ks/k f . For all the simulated cases in this study, the parameter
σT 4

0/(k f θ/L) = 24.65.

2.2. Mathematical analysis
In order to compare the three heat transfer modes’ contri-

butions occurring either through the hot or the cold boundary
of the enclosures, it is useful to define a dimensionless coeffi-
cient quantifying each of them. For convection heat transfer,
the commonly used Nusselt number is given by the ratio be-
tween the convection heat transfer rate through the enclosure
per unit depth and a reference heat transfer rate corresponding
to conduction heat transfer in a stagnant fluid. This reference
heat transfer rate is given by:

q′re f =
(
h + t/cosφ

) k f θ

L
. (7)

For the geometry used in this study, it is important to recall
that the three modes of heat transfer do not occur on the same
boundaries in the enclosures. The terms “convection” and “ra-
diation” are used here to refer to the heat passing through the
vertical boundaries of the cavity (vertical blue and red lines in
Figure 4) while the term “conduction” refers to the heat pass-
ing through the vertical boundaries of the partition walls (ver-
tical green lines in Figure 4). Consequently, in order to per-
form direct comparison between the three modes of heat trans-
fer, the relative surface area on which a given heat flux takes
place has to be considered since the fraction occupied by the
vertical boundaries of the cavity and the vertical boundaries of
the partition walls are not the same. Thus, the convection, radi-
ation and conduction heat transfer rates through the enclosure
per unit depth are computed as follows:

q′conv = −k f

∫ h+ 1
2 t/ cos φ

1
2 t/ cos φ

∂T
∂x

dy, (8)

q′rad =
ε

1 − ε

∫ h+ 1
2 t/ cos φ

1
2 t/ cos φ

|σT 4 − J| dy, (9)

Figure 4: Schematic representation illustrating where the three modes of heat
transfer take place in an enclosure. The vertical red and blue dash-lines repre-
sent the location of the convection and radiation heat transfer while the vertical
green lines show the conduction heat transfer.

q′cond = −ks

 ∫ 1
2 t/ cos φ

0

∂T
∂x

dy +

∫ h+t/ cos φ

h+ 1
2 t/ cos φ

∂T
∂x

dy

 , (10)

with the location of the coordinate system’s origin as shown in
Figure 3.

In this paper, we normalize the three heat transfer rates by the
reference conduction heat transfer rate introduced in Equation
(7). Therefore, the so-defined Nusselt numbers and the total
Nusselt number are given by:

Nuconv ≡
q′conv

q′re f
, (11)

Nurad ≡
q′rad

q′re f
, (12)

Nucond ≡
q′cond

q′re f
, (13)

Nutot = Nuconv + Nurad + Nucond. (14)

The integrals in Equations 11 to 13 can be computed either
on the hot or the cold boundary (x = 0 or x = L). Although the
total Nusselt number is necessarily the same on both bound-
aries, each of the three contributions differ slightly depending
on which boundary the integrals are evaluated on when radia-
tion is taken into account (ε , 0). In this paper, we use the
average of the values evaluated on both the hot and cold bound-
aries to report our Nusselt numbers Nuconv, Nurad and Nucond.

In order to compare the thermal diode potential between the
simulated cases, we define a thermal diode coefficient (ξ60):

ξ60 ≡

Nutot

∣∣∣∣
φ=60◦

Nutot

∣∣∣∣
φ=−60◦

. (15)
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A large value of the thermal diode coefficient (ξ60) thus cor-
responds to a case for which the total heat transfer at φ = 60◦ is
much larger than it is at φ = −60◦. A similar definition can also
be used for ξ30 (cases at φ = ±30◦), but its value is found to be
always smaller than ξ60 for the parametric cases considered in
this study. We do not assume that ξ60 corresponds to the max-
imum thermal diode coefficient possible, but we can assume
that it is representative for the purpose of addressing the basic
impact of the heat transfer modes.

3. Numerics and validation

Using ANSYS R© Fluent [26], the problem is solved with a
finite-volume method using a coupled pressure-velocity algo-
rithm [27]. For the radiation model, a surface-to-surface (S2S)
method considering opaque, gray and diffusive surfaces is used
[26]. The convergence criteria for all equations is set to 10−6 ex-
cept for the energy residual which is set to 10−10. Smaller con-
vergence criteria by two orders of magnitude have been tested
and no significant differences were observed. As mentioned
previously, the Boussinesq approximation is used to conduct
the simulations. In order to guarantee the validity of this ap-
proximation, some parametric cases have been computed con-
sidering variable physical properties for air, i.e., without using
the Boussinesq approximation. The results obtained were es-
sentially unchanged (less than 1% for the Nusselt numbers and
the maximum stream function values), so we can confidently
assume the Boussinesq approximation to be valid for the para-
metric cases treated in this study.

The mesh that has been used to carry out the simulations con-
sists of quadrilateral elements which are parallel to the vertical
boundaries and to the partition walls, as shown in Figure 5. The
thickness of the first layer of elements next to the boundaries,

Figure 5: Mesh used for an enclosure with solid partition walls at an inclination
angle of 30◦ (t/L = 0.1).

both in the fluid and in the solid regions, is 10−5L, which is
much thiner than the thermal boundary layer providing a suf-
ficiently fine discretization near those solid boundaries. We
have verified that the same mesh resolution can be used for
each parametric case. Consequently, the number of elements
increases with the inclination angle. For the single cavity, the
number of elements is 150×150, 150×165 and 150×230 for in-
clination angles of 0◦, 30◦ and 60◦ respectively. The entire thin
partition wall (t/L = 0.01) is divided into 60 vertical elements
while about 100 elements are used for the thicker partition wall
(t/L = 0.1). The solutions obtained are all mesh-independent.
Indeed, a finer and a coarser meshes have been tested and the
solutions were essentially unchanged. Table 1 shows the grid
sensitivity analysis for the case of an infinite structure of enclo-
sures at an inclination angle of 60◦. Based on these results, the
resolution used for the mesh composed of 60 800 elements has
been chosen to carry out the parametric study.

Table 1: Grid sensitivity analysis for an infinite structure of enclosures with
solid partition walls and radiation (t/L = 0.1, ks/k f = 10 and ε = 0.9) at an
inclination angle of 60◦.

Number
of cells

ψ∗max Nutot

28 600 0.0609 8.358
60 800 0.0607 8.361

160 000 0.0607 8.361

In order to further validate the main features of the numer-
ical methodology used in this study, some comparisons with
the benchmark solution presented by De Vahl Davis & Jones
[3] have been performed for the pure-convection cavity differ-
entially heated. For the combined convection-conduction heat
transfer problem, the methodology used in the present work has
been compared to the work of Costa & al. [20] who consid-
ered air-filled enclosures partially separated by solid regions.
The combined convection-radiation heat transfer calculations
have also been compared with the results presented by Balaji
& Venkasteshan [23] who investigated the interaction between
surface radiation and free convection in square cavities. Table
2 summarizes some of the quantities that have been compared
with the literature. As it can be seen, our numerical methodol-
ogy is in good agreement with all of these independent studies,
giving us great confidence in the results presented in the next
section.
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Table 2: Comparison with various results presented in the literature. a) Pure-
convection cavity with Pr = 0.71, h/L = 1, φ = 0◦. b) Combined convection-
conduction heat transfer with Ra = 107, Pr = 0.73, h/L = 5, φ = 0◦ and
t/L = 0.001. c) Combined convection-radiation heat transfer with Ra = 5×104,
Pr = 0.728, h/L = 1, φ = 0◦, T ∗0 = 6.25 and σT 4

0 /(k f θ/L) = 1.1025.

a) Pure-convection cavity
Present study De Vahl Davis & Jones [3]

max vertical
....velocity

Ra = 105

Ra = 106
0.0807
0.2604

0.0812
0.2597

.Nutot
Ra = 105

Ra = 106
4.523
8.812

4.519
8.800

b) Combined convection-conduction heat transfer
Present study Costa & al. [20]

Nutot

ks/k f = 1
ks/k f = 10
ks/k f = 100
ks/k f = 1 000

3.552
3.585
3.872
4.845

3.600
3.634
3.970
5.029

c) Combined convection-radiation heat transfer
Present study Balaji & Venkateshan [23]

Nurad
ε = 0.1
ε = 0.9

0.0374
0.4261

0.0366
0.4264

.Nuconv
ε = 0.1
ε = 0.9

3.619
3.593

3.491
3.566

4. Results and discussion

In this initial phase of our investigation, let us recall that
we have fixed five of the nine dimensionless parameters gov-
erning this problem: h/L = 1, Ra = 5 × 105, Pr = 0.71,
σT 4

0/(k f θ/L) = 24.65 and T ∗0 = 9.75. These values are con-
sistent with an air-filled enclosure of about 5 cm width, a tem-
perature difference of 28.5 K and a mean temperature of 278
K. The four free parameters that are varied are the emissivity
of the inner boundaries of the cavities (ε), the thickness ratio of
the partition walls (t/L), their thermal conductivity ratio (ks/k f )
and their inclination angle (φ).

4.1. Single adiabatic enclosure

4.1.1. Pure-convection cavity
The first case of interest is the single cavity with adiabatic

upper and lower boundaries (without solid partition walls and
without radiation), as shown in Figure 3a. In this configura-
tion, the only mode of heat transfer involved is convection. The
results presented in this section will be used as a reference in
order to compare the contributions of the other modes of heat
transfer.

Figure 6 shows the convection Nusselt number as a function
of the inclination angle for this adiabatic cavity. Note that the
lines drawn between computed data points only serve to link the
points together and do not serve to interpolate between them.
As it can be observed, the inclination angle strongly affects the
convection Nusselt number in the cavity. The high asymmetry
of the curve qualitatively demonstrates the thermal diode po-
tential that is discussed in many other works [10, 11, 18, 28].
For this specific configuration, the value of the thermal diode

Figure 6: Convection Nusselt numbers as a function of the inclination angle for
a single adiabatic cavity without partition walls and without radiation (physical
domain of Figure 3a). Straight lines drawn between computed points are not
intended for interpolation purposes.

coefficient is ξ60 = 10.8. It means that the total heat transfer
across the cavity is 10.8 times smaller at an inclination angle of
−60◦ in comparison with the one at an angle of 60◦.

The results shown in Figure 6 are in agreement with the pre-
vious works mentioned above. Although it does not appear on
the graph, it is interesting to note that the maximum heat trans-
fer does not occur at 0◦. Indeed, at an inclination angle of 15◦, a
Nusselt number of 7.47 is obtained. The same observation has
also been made by Baı̈ri & al. [10].

At first sight, the value of the Nusselt number for the cavity
at −60◦ (which is lower than 1) may seems doubtful because
one could think that it means that the heat transfer in the cav-
ity is smaller than what it would be in a stagnant fluid where
there would be only pure conduction. Of course, this is not the
case, and the value lower than 1 is entirely due to the method
used to compute the average Nusselt numbers. The characteris-
tic length (L) used in the calculation is the length of the cavity
at 0◦. Since the horizontal distance between the hot and the cold
boundary remains the same, the effective length over which the
heat transfer occurs is larger than the characteristic length for
inclination angles other than 0◦. Consequently, it is possible to
observe a Nusselt number lower than 1. Indeed, by replacing
the fluid in the cavity by a solid region having the same thermal
properties as air, a Nusselt number of 0.34 is obtained, com-
pared to the actual 0.43 for the adiabatic cavity at φ = −60◦.The
value of 0.34 therefore corresponds to the lower limit value of
the Nusselt number for this configuration.

4.1.2. Combined convection-conduction enclosure
Considering the single adiabatic cavity of the previous sec-

tion, two solid half-partition walls are added to the physical do-
main (Figure 3b). The main point of interest in this section is
the combined convection-conduction heat transfer process.

To assess the importance of the conduction heat transfer in
the partition walls, the thickness and the thermal conductivity
ratios between the partition walls and the fluid region are var-
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Figure 7: Conduction and total Nusselt numbers as functions of the inclina-
tion angle for three different parametric cases in a single adiabatic enclosure
with solid partition walls but without radiation (physical domain of Figure 3b).
Straight lines drawn between computed points are not intended for interpolation
purposes.

Figure 8: Conduction and convection Nusselt numbers as functions of the incli-
nation angle for two different parametric cases in a single adiabatic enclosure
with solid partition walls but without radiation (physical domain of Figure 3b).
Straight lines drawn between computed points are not intended for interpolation
purposes.

ied. The least conductive configuration consists of thin parti-
tion walls made of low-conductivity material (t/L = 0.01 and
ks/k f = 1), and the most conductive case is characterized by
thicker and more conductive partition walls (t/L = 0.1 and
ks/k f = 10). Note that a thermal conductivity ratio of 10 is
still low compared to the value that characterizes metallic ma-
terials like steel and aluminum (ks/k f would approximately be

Figure 9: Temperature fields (colored background) and isotherms (black lines)
in a single adiabatic cavity on the left (physical domain of Figure 3a) and in a
single adiabatic enclosure with solid partition walls but without radiation on the
right (physical domain of Figure 3b with t/L = 0.1 and ks/k f = 10; partition
walls not shown).

Figure 10: Thermal diode coefficient (ξ60) for different parametric cases in a
single adiabatic enclosure with solid partition walls but without radiation (phys-
ical domain of Figure 3b).

equal to 1 000 and 10 000 respectively).
Following this parametric study, it is found that the conduc-

tion heat transfer becomes significant for some configurations.
Indeed, Figure 7 shows that the conduction may even become
the dominant contribution to the total heat transfer across the
enclosure for the most conductive configuration of partition
walls at an inclination angle of −60◦.

Moreover, the effect of conduction on the convection heat
transfer in the cavity is interesting to note. As shown in Fig-
ure 8, more conductive partition walls lead to a decrease of the
convection heat transfer in the cavity. The results shown in Fig-
ure 8 illustrates the importance of the interaction between the
two heat transfer modes considered. The resulting decrease of
convection when conduction is increased in the solid partition
walls can be explained by the variation of the thermal bound-
ary layer thickness. By varying the thermal conductivity of the
solid partition walls, for a constant thickness, the temperature
distribution on the upper and lower boundaries of the cavity is
affected, reducing the temperature gradients of the fluid near the

8



vertical boundaries. In Figure 9, the temperature distributions
in an adiabatic cavity without partition walls and in a cavity
with the most conductive configuration of partition walls at an
inclination angle of 0◦ are shown. Note that the partition walls
have not been drawn in the figure of the enclosure located on
the right in Figure 9. It can be observed that the presence of the
conductive partition walls warms the fluid near the bottom left
corner of the cavities. This results in the thickening of the ther-
mal boundary layer and hence to a decrease of the temperature
gradient at the boundary which in turn results in a decrease in
the convection heat transfer.

Also, the thermal diode potential of the adiabatic enclosure
with solid partition walls is weakened in comparison with the
pure-convection cavity, as shown in Figure 10. Indeed, the
thermal diode coefficient drops from ξ60 = 10.8 for the pure-
convection cavity to ξ60 = 4.2 for the most conductive configu-
ration with solid partition walls (t/L = 0.1 and ks/k f = 10). A
part of the explanation is due to the overall increase of the to-
tal heat transfer associated to the presence of conductive solid
partition walls which results in a decrease of the thermal diode
potential.

4.1.3. Combined convection-radiation cavity
In this section, a domain without partition walls is consid-

ered (see Figure 3a). In order to evaluate the contribution of
radiation, three different emissivity values (ε = 0, ε = 0.1 and
ε = 0.9) for the four inner boundaries of the cavity are con-
sidered. The value of ε = 0 corresponds to the case treated in
section 4.1.1, i.e., the pure-convection cavity.

In this study, it is systematically found that radiation con-
tributes significantly to the total heat transfer in the cavity. As
shown in Figure 11, radiation is responsible for approximately
half of the global heat transfer in the cavity when the emis-
sivity value is 0.9. Further, the impact of radiation cannot be

Figure 11: Radiation and total Nusselt numbers as functions of the inclination
angle for two different parametric cases in a single adiabatic cavity with radia-
tion but no partition walls (physical domain of Figure 3a). Straight lines drawn
between computed points are not intended for interpolation purposes.

neglected even for the low emissivity case (ε = 0.1).
As it has been done in the case of conduction, it is interesting

to note that radiation significantly affects the convection heat
transfer. Figure 12 shows the convection Nusselt numbers as
a function of the inclination angle for the three different emis-
sivity values. It is shown that for positive inclination angles,
the convection heat transfer decreases when the emissivity in-
creases and for negative inclination angles, the convection heat
transfer increases with the emissivity.

In order to better understand the effect of radiation on con-
vection, temperature fields along with stream functions are pre-
sented in Figure 13 for a positive and a negative inclination
angle. The dimensionless stream function (ψ∗) shown in Fig-
ure 13 is normalized by a reference two-dimensional flowrate
given by the product of the reference length and the refer-
ence velocity. For the four configurations presented in Fig-
ure 13, the increment value between each black line is con-
stant (∆ψ∗ = 0.00206), meaning that the flowrate between each
streamline is the same. These stream functions clearly demon-
strate the different intensities in the convective motion of the
different configurations.

By definition, radiation is the electromagnetic transfer of en-
ergy that occurs without the participation of a medium between
surfaces at nonzero temperatures [29]. In a closed domain like
the one considered here, radiation tends to make the temper-
ature distributions on the inner boundaries of the cavity more
uniform without directly impacting the fluid itself. Since the
convective motion of the fluid is caused by the difference of
temperature between the boundaries, it is understandable that
convection heat transfer should be affected by the radiation ex-
changes between these boundaries. For positive inclination an-
gles, where the convective motion of the fluid is important, radi-
ation tends to weaken the motion of the fluid because of its ten-
dency to uniformize the temperature distribution. Based on the

Figure 12: Convection Nusselt numbers as a function of the inclination angle
for three different emissivities in a single adiabatic cavity with radiation but no
partition walls (physical domain of Figure 3a). Straight lines drawn between
computed points are not intended for interpolation purposes.
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Figure 13: Temperature fields (colored background) and stream functions
(black lines, ∆ψ∗ = 0.00206) in a single adiabatic cavity with radiation but
no partition walls (physical domain of Figure 3a).

Figure 14: Thermal diode coefficient (ξ60) for different parametric cases in a
single adiabatic cavity with radiation but no partition walls (physical domain of
Figure 3a).

same idea, for negative inclination angles, where the convective
motion in the cavity is weak due to the temperature stratifica-
tion in the fluid, thermal exchanges caused by radiation mitigate
the temperature stratification in the fluid, and thus result in an
increase of the convective motion.

The importance of radiation on the total Nusselt number is
evident when comparing Figures 6 and 11. Interestingly, the
red curves representing the radiation Nusselt number are mostly
symmetrical around φ = 0◦. As for conduction, it means that
radiation leads to a decrease of the thermal diode potential be-
cause of the overall increase in the heat transfer for all inclina-
tion angles. Moreover, because radiation tends to attenuate the

asymmetry of the convection heat transfer, the thermal diode
potential is further decreased. This is confirmed in Figure 14,
which presents the thermal diode coefficient of the cavity for
the three emissivity values considered. As it can be seen, the
impact of radiation on the thermal diode potential is drastic.
In fact, the thermal diode coefficient drops from ξ60 = 10.8 to
ξ60 = 4.5, when the emissivity goes from 0 to 0.1, and drops
to ξ60 = 2 when ε = 0.9. In other words, it means that the at-
tractive thermal diode potential of this simple adiabatic cavity
is strongly reduced when radiation is taken into account.

4.1.4. Three-heat-transfer-mode enclosure
In this section, the importance and the impact of the three

modes of heat transfer in a single adiabatic cavity with solid
partition walls (see Figure 3b) is presented. It is found that for
some parametric cases, the three modes can account more or
less for the same proportion of the total Nusselt number.

As shown in Figure 15, which presents the total, the convec-
tion, the radiation and the conduction Nusselt numbers of two
parametric cases as functions of the inclination angle, none of
the heat transfer modes can be neglected. The two paramet-
ric cases presented in Figure 15 are, in some sense, the most
extreme cases investigated. The solid-line case combines the
thickest and most conductive partition walls tested along with
the highest emissivity (t/L = 0.1, ks/k f = 10 and ε = 0.9),
while the dotted-line case corresponds to the least conductive
partition walls and the lowest non-zero emissivity (t/L = 0.01,
ks/k f = 1 and ε = 0.1). Depending on the inclination angle
and the parametric case, each heat transfer mode can become
dominant. The total Nusselt numbers obtained are obviously

Figure 15: Total, convection, radiation and conduction Nusselt numbers as
functions of the inclination angle for two different parametric cases in a sin-
gle adiabatic enclosure with solid partition walls and with radiation (physical
domain of Figure 3b). Straight lines drawn between computed points are not
intended for interpolation purposes.
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Figure 16: Conduction Nusselt numbers as a function of the inclination angle
for three different emissivities in a single adiabatic enclosure with solid partition
walls and with radiation (physical domain of Figure 3b). Straight lines drawn
between computed points are not intended for interpolation purposes.

higher than those computed when only one or two heat transfer
modes were considered. For the most conductive case investi-
gated (t/L = 0.1 ks/k f = 10 and ε = 0.9), each mode of heat
transfer accounts for a significant proportion of the total Nusselt
number, while the convection is clearly dominant in the least
conductive configuration. In the latter, the low total Nusselt
number of the enclosure at φ = −60◦, leading to an interesting
insulating character, is worth noticing.

Furthermore, it is interesting to investigate the interaction
between the conduction and the radiation heat transfer in the
enclosure. Actually, it is found that the emissivity of the in-
ner boundaries of the cavity influences the conduction Nusselt
number in the solid partition walls. As shown in Figure 16,
which presents the conduction Nusselt number as a function of
the inclination angles for different emissivity values, the con-
duction heat transfer increases as the emissivity increases.

Because of radiation, some of the heat from the warmer re-
gions of the cavity’s inner boundaries is transfered to the op-
posite colder extremities. For example, the cold extremity of
the upper boundary (top right corner in Figure 3b) receives an
important amount of net radiation. On the other hand, one can
conceive that the left extremity of the upper boundary, which is
nearly at TH , loses an important quantity of heat through radi-
ation. Because of the geometry and the imposed temperatures,
most of the net radiation exchanges occur at the corners of the
enclosure. The left part of the upper partition wall emits an im-
portant amount of energy while the upper right part receives a
lot of it. This leads to an increase of the temperature gradient
at the extremities of the solid partition walls and hence, to an
increase in the conduction heat transfer. Based on this obser-
vation and on those made in the previous section regarding the
insulating properties of an enclosure at φ = −60◦, one can con-
clude that radiation is quite detrimental not only because of its
own contribution to the total Nusselt number, but also because
of its tendency to increase both the conduction and the convec-
tion heat transfer.

Figure 17: Thermal diode coefficient (ξ60) for different parametric cases in a
single adiabatic enclosure with solid partition walls and with radiation (physical
domain of Figure 3b).

Lastly, Figure 17 shows the thermal diode potential for dif-
ferent parametric cases when the three heat transfer modes
are considered. For the worst case investigated, the thermal
diode coefficient falls to around ξ60 = 1.8, which is far be-
low the promising value of ξ60 = 10.8 obtained with the pure-
convection cavity.

4.2. Infinite stack of enclosures

Now that the impact of the three modes of heat transfer have
been treated separately in a single adiabatic enclosure, the case
of an infinite structure of piled-up enclosures is considered. The
geometry used in this section is the one presented in Figure 3c.

Similarly to the three-heat-transfer-mode adiabatic enclosure
discussed in the previous section, all the three modes of heat
transfer account for a significant proportion of the total Nusselt
number. Thus, for most of the investigated cases, they must all
be taken into account to correctly capture the physics at play.
Figure 18 shows the total, convection, radiation and conduction
Nusselt numbers for two parametric cases of the infinite struc-
ture of piled-up enclosures. Again, the two cases presented are
the two most extreme cases investigated in terms of conductive
properties and emissivity.

By comparing the results of the single adiabatic enclosure
(Figure 15) with those of the infinite pile (Figure 18), one can
observe that the maximum values of the total Nusselt numbers
are relatively similar. However, this is not true for the low-
Nutot cases. Indeed, important differences in the Nusselt num-
bers are noticed especially when thin partition walls are con-
sidered. The main difference observed between the single adi-
abatic enclosure and the infinite pile stems from the convection
heat transfer. For negative inclination angles, the convection
Nusselt numbers are higher in the case of the infinite pile com-
pared to the single adiabatic enclosure while they are lower for
positive inclination angles.

Figure 19, which shows the temperature fields and the stream
functions of the least conductive case at φ = −60◦, clearly
demonstrates once again that the physics of the infinite structure
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Figure 18: Total, convection, radiation and conduction Nusselt numbers as
functions of the inclination angle for a infinite structure of piled-up enclosures
(physical domain of Figure 3c). Straight lines drawn between computed points
are not intended for interpolation purposes.

Figure 19: Temperature fields (colored background) and stream functions
(black lines, ∆ψ∗ = 0.0018) in a single adiabatic enclosure on the left and in
an infinite structure of piled-up enclosures on the right (t/L = 0.01, ks/k f = 1,
ε = 0.1 and φ = −60◦).

significantly differs from the single adiabatic enclosure. As ob-
served, the interaction between the piled-up enclosures results
in a temperature distribution at the upper and lower extremities
of the enclosure that is different from the distribution obtained
with an adiabatic enclosure. As it can be deducted from the
temperature gradients at the boundaries in Figure 19, there is
a heat exchange between the piled-up enclosures with periodic
boundary conditions that alters the thermal stratification which
is observed in the adiabatic case. In other words, there is a
net upward heat flux between the enclosures. It suggests that
adiabatic enclosures may not be appropriate to model an actual
piled-up structure.

Figure 20: Thermal diode coefficient (ξ60) for different parametric cases in an
infinite structure of piled-up enclosures (physical domain of Figure 3c).

In the infinite pile of enclosures, the thermal diode poten-
tial is again decreased compared to the other cases presented
before. Figure 20 presents the thermal diode coefficient for the
same cases investigated in the previous section, but now consid-
ering the infinite structure. As it can be seen, the thermal diode
coefficient drops to around ξ60 = 1.4 for most of the cases.

One notices that for applications in which the insulating
properties are only required in one direction, the single adi-
abatic enclosure at φ = −60◦ is approximately as good as a
panel of commercial polystyrene that is widely used in insula-
tion. However, the insulating properties are strongly affected
when more than one enclosure is considered, as it can be ob-
served in Table 3. Indeed, the total Nusselt number increases
from 0.43 for a single adiabatic cavity to 2.6 when an infinite
stack of enclosures involving the three heat transfer modes is
considered. The difference between the total Nusselt numbers
of the adiabatic enclosure and the infinite pile is significant. As
mentioned previously, it mainly comes from the convection heat
transfer which is much more important in the infinite structure,
as it can be noticed by looking at the stream function contours
in Figure 19.

The configuration of the infinite pile presented in Table 3 is
the most insulating one among all the parametric cases investi-
gated (at φ = −60◦). In this configuration, the dominant heat
transfer mode is convection. Consequently, if the objective is to
further improve the insulating properties of the structure, one
should seek to limit the convective fluid motion. We can expect
that a pile composed of cavities having smaller aspect ratios
could be efficient in that sense. Also, we have found that this
can be achieved by inserting a short fin parallel to the vertical
boundaries in the middle of the cavities (some sort of a fence).
It would be interesting in future works to investigate if such
techniques could allow lowering the total Nusselt number to a
level comparable to the one of the commercial polystyrene pan-
els while using significantly less material.

12



Table 3: Nusselt numbers for different cases of enclosures at φ = −60◦ com-
pared to a polystyrene panel.

Nutot Nuconv Nurad Nucond

Infinite pile of air-filled
enclosures (t/L = 0.1, 2.60 1.67 0.34 0.59
ks/k f = 1 and ε = 0.1)

Adiabatic enclosure
(t/L = 0.1, ks/k f = 1 1.15 0.51 0.32 0.32
and ε = 0.1)

Single adiabatic air-filled
cavity

0.43 0.43 - -

Commercial polystyrene
panel1

1.09 - - 1.09

5. Conclusion

In the present numerical study, the three modes of heat trans-
fer through a two-dimensional stack of parallelogrammic air-
filled enclosures have been investigated. For an aspect ratio of
1, a Rayleigh number of 5 × 105, a Prandtl number of 0.71, a
relative radiation level of 24.65 and a normalized mean temper-
ature of 9.75, the importance and the interaction between each
of the heat transfer modes have been discussed.

First, the importance of the conduction heat transfer in the
partition walls has been demonstrated. When the partition walls
are 10 times more conductive than air and 10 times thiner than
the fluid cavity, conduction is the dominant heat transfer mode
for highly negative inclination angles. It has also been shown
that using more conductive partition walls leads to a decrease
of the convective motion of the fluid.

Then, the importance of the radiation heat transfer has been
exposed. For high emissivity values, radiation becomes the
most important heat transfer mode in the cavities. The total
Nusselt number is highly sensitive to small changes of emis-
sivity. Moreover, it was found that the emissivity of the inner
boundaries of the cavity impacts the conduction and the con-
vection heat transfers in a significant way.

Since each heat transfer mode can be important and due to
the fact that the interactions between the different modes are
significant, the three of them must be taken into account in or-
der to describe the physical phenomena occurring in the enclo-
sures. Indeed, by neglecting one of the heat transfer mode, one
does not only neglect its contribution, but also affects the other
modes.

Furthermore, the thermal diode potential is strongly reduced
when the complete problem is considered. In an infinite stack
of enclosures, the thermal diode potential is 8 to 9 times smaller
than in the single pure-convection cavity. Also, due to the
convection heat transfer and to the heat exchange between the

1http://insulation.owenscorning.ca/assets/0/188/1c2c8d2d-4fe5-4038-970c-
9028b3af7414.pdf

piled-up enclosures, the insulating properties of the infinite
stack are significantly reduced compared to single adiabatic en-
closures, but the concept remains interesting if the insulating
properties are only needed in one direction. In this context,
further research needs to be devoted to the reduction of the con-
vection heat transfer in these structures in order to obtain a bet-
ter insulating structure composed of parallelogrammic air-filled
enclosures. Different aspect ratios (h/L) and thicker partition
walls should be primarily considered, and it would also be in-
teresting to investigate the effects of varying the Rayleigh num-
ber.
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