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ABSTRACT

The phenomenon of self-sustained pitch-heave oscil-
lations of an airfoil at transitional Reynolds numbers
is studied by two-dimensional numerical simulations
using the Spalart-Allmaras and γ−Reθ models. Pre-
dicted pitching and heaving amplitudes and frequen-
cies of the oscillations are compared with previous ex-
perimental results. The numerical simulations repro-
duce the same trends as in the experiments. When
large translational stiffnesses are used, large heaving
and pitching amplitudes are obtained. These oscilla-
tions can be labelled as coalescence flutter. The flow
dynamics and the impact of the different turbulence
models are also discussed.

1 INTRODUCTION

Over the course of the last decades, there has been
an increasing interest in the development of unmanned
aerial vehicles (UAVs) and micro-air vehicles (MAVs).
These vehicles can be used in a large variety of ap-
plications and can be either remotely piloted or au-
tonomous. As typical commercial aircrafts usually
fly at high Reynolds number O(107), the small length
scale and low velocities of UAVs and MAVs result in
a flight regime with low-to-moderate chord Reynolds
numbers (15,000 to 500,000) [6].

The flow at these Re numbers is highly nonlinear and
complex viscous phenomena are present. Indeed, one
can typically observe an extensive region of laminar
flow in the boundary layer up to the separation point. A
transition of the laminar shear layer then follows with
a possible re-attachment of the turbulent shear layer
thus forming a laminar separation bubble (LSB) on the
surface of the airfoil [1, 12].

Poirel’s group [8] at Kingston has worked on a se-

ries of experimental studies on an elastically mounted
NACA0012 wing at Reynolds numbers in the range
5.0× 104 < Rec < 1.2× 105. Wind tunnel experi-
ments have shown that the rigid airfoil in this transi-
tional flow regime undergoes self-sustained or limit-
cycle oscillations (LCO). Typical results are shown in
Fig. 1. The pitch-only oscillations are characterized
by a simple harmonic motion of small amplitudes (less
than 5.5 deg) and nondimensionnal frequencies of the
order f c/U∞ ≈ 0.05∼ 0.07. These have also been ob-
served numerically in different studies [4, 9] led at the
CFD lab LMFN at Laval University. These oscilla-
tions have been labelled as laminar separation flutter
since laminar boundary-layer separation is key to trig-
gering the phenomenon and turbulent boundary layers
inhibit the appearance of oscillations.
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Figure 1: Comparison of self-sustained 2 DOF oscil-
lations characteristics from experiments [5].

In their recent work, Mendes et al. [5] conducted wind
tunnel experiments of a NACA0012 allowing two-
degree-of-freedom motion in both the pitching and
heave directions. Their experimental setup is illus-
trated in Fig. 2. The wing has a chord of 0.156m and a



span of 0.61m (AR = 3.9). The motion is permitted by
the use of springs wrapped around two sets of pulleys.
One pair of pulleys is attached to a rod at 0.186c from
the leading edge of the airfoil to allow for the pitching
motion. These springs have a stiffness of 58 N/m that
is kept constant in all experiments. The heaving mo-
tion is constrained by another pulley system. Different
stiffnesses were tested for the plunging springs: a low
stiffness of 75 N/m and a high stiffness of 371 N/m.

Figure 2: Schematic of experimental apparatus, repro-
duced from [5].

The two-degrees-of-freedom experimental results are
also included in Fig. 1. Two types of oscillating am-
plitudes were observed: small and large. Although
both small and large oscillations were measured using
a high plunge stiffness, only small oscillations were
obtained when a low plunge stiffness was used. In this
case, the addition of a trip wire close to the leading
edge did not inhibit the appearance of the large oscil-
lations meaning that these large oscillations are not as-
sociated with laminar separation flutter but rather with
coalescence flutter. Coalescence flutter is known as a
dynamic instability leading to exponentially growing
oscillations until aerodynamic or structural forces im-
pede this growth creating the LCO behavior [5]. The
instability responsible for the flutter occurs through the
coupling effect between the pitching and heaving mo-
tions [10].

This paper aims to demonstrate the capability of mod-
ern CFD to capture and reproduce the observed com-
plex coupling between the flow and the elastic struc-
ture.

2 COMPUTATIONAL METHODOLOGY

The fluid problem is solved with the finite volume,
open source, CFD code OpenFOAM [7]. The fluid
flow is governed by the mass and momentum conser-
vation equations which take the following forms for an
incompressible turbulent flow:

∂Ui

∂xi
= 0 , (1)

∂Ui

∂t
+U j
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∂x j
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ρ
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j
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where U is the ensemble averaged mean fluid ve-
locity vector, ρ is the fluid density, p is the pres-
sure, ν is the kinematic viscosity and νt is the tur-
bulent kinematic viscosity. The fluid solver imple-
ments Eqs. (1) and (2) using the finite-volume method.
The transient term is discretized with a second or-
der backward implicit scheme. The convection term
is discretized with a second order scheme based on
a linear upwind interpolation. The diffusion term
is discretized with a second order accurate scheme
based on linear interpolation and using an explicit non-
orthogonal-corrected surface normal gradient scheme.
The pressure-velocity coupling is done by means of
the PISO segregated algorithm. The linear solver is a
preconditioned bi-conjugate gradient (PBiCG) method
for the momentum and turbulence equations, and a
generalised geometric-algebraic multi-grid (GAMG)
method is used for the pressure equation.

The aeroelastic system corresponding to the experi-
ments [5] is represented in the sketch of Fig. 3 along
with the nominal parameters used in both the experi-
ments and the numerical simulations. The freestream
velocity U∞ varies from 5 to 14 m/s.

A timestep of ∆t = 2× 10−5 sec has been used in all
simulations. This allows for about 15,000 timesteps
per aeroelastic oscillation and 200 timesteps per vor-
tex shedding period which has been verified to be
quite sufficient. An RMS convergence criterion of
10−6 on all quantities is requested at each timestep.
Timestep and convergence level independance studies
have shown that using a finer timestep of ∆t = 1×10−5

sec or reaching a convergence level of 10−7 did not
change the results.

Fairly periodic oscillation cycles are observed and sev-
eral such periodic cycles are computed to allow for the
production of good, stationary statistics and spectral
analysis. The typical run time for a whole simulation
requires about one week on four Intel Xeon X5560 2.8
Ghz processors.
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Figure 3: Two degrees of freedom aeroelastic model-
ing.

2.1 Aeroelastic modeling

We consider an elastically-mounted rigid body with
two-degrees-of-freedom respectively in pitch and
heave. The problem is sketched in Fig. 3. A Carte-
sian coordinate system is used with the y axis defined
positive downward and the x axis positive towards the
right, in order to respect the aerodynamic convention
concerning the sign of the pitching angle θ.

The dynamics of the airfoil is thus governed by:

Maxis = Iaxis θ̈ + Dθ θ̇ + Kθ θ + mÿxθ cos(θ) (3)

−L = m [ÿ+ xθ cos(θ) θ̈− xθ sin(θ) θ̇
2] (4)

+ Dyẏ + kyy.

where Iaxis is the moment of inertia about the elastic
axis, Dθ is the rotational damping coefficient, Kθ is
the torsional stiffness coefficient, Maxis is the moment
about the axis exerted by the fluid, m is the mass, Dy
is the plunging damping coefficient, Ky is the plung-
ing stiffness coefficent and L is the lift. The structural
parameters indicated in Fig. 3 were obtained in the lab-
oratory by direct physical measurements and from no-
flow free decay tests [5, 8]. These equations are cou-
pled in the general case where the pitching axis is not
coincident with the center of mass (xθ 6= 0). In this
paper xθ = 0.1c.

In the simulations, the flow solver is coupled with
the dynamics of the elastically mounted rigid airfoil.
The calculation algorithm, performed at each timestep,
goes as follows:

1. The instantaneous fluid flow around the airfoil is
computed;

2. The lift and moment exerted by the flow on the
airfoil are calculated;

3. The equations of motion, Eq. (3) and (4), are
solved using a fifth-order Runge-Kutta scheme to
determine the pitch rate θ̇, angular position θ, ver-
tical velocity ẏ and position y;

4. The vertical and angular positions and veloci-
ties of the airfoil are thus updated and the next
timestep can proceed.

2.2 Turbulence modeling

In the present study, turbulence closure is achieved by
the Boussinesq eddy-viscosity approximation and the
eddy viscosity νt is modeled by the Spalart-Allmaras
RANS model [11] or the γ−Reθ transition model [3].
The S-A model is a one-equation turbulence model for
the modified turbulent viscosity ν̃. This model does
not need wall functions since it provides near-wall
resolution and is based on empiricism and arguments
from dimensional analysis. Since simulations are per-
formed at transitional Reynolds numbers, the γ−Reθ

model is also tested to investigate the impact of the
transition phenomena. It is a correlation-based transi-
tion model built on transport equations using only local
variables. It adds two transport equations to the k−ω

SST model.

Previously published comparisons of URANS calcula-
tions (algebraic, one-equation and two-equations tur-
bulence models) with experimental measurements for
pitching only (rotorcraft-type) oscillating airfoils indi-
cated that the main weakness of the computational and
theoretical methods was the turbulence modeling [2].
It is already known that unsteady calculations may
be strongly affected by the choice of turbulence and
transition models [13]. Although the Spalart-Allmaras
model has been built up based on aerodynamic con-
siderations, it was developed from steady flow cases
and shares the same basic limitations as other RANS
models for flows characterized by massive separation.
URANS turbulence modeling is thus obviously chal-
lenged here and may be criticized. However, it is im-
portant at this point to recall that the current paper ob-
jective is not so much to provide precise quantitative
results for the entire parametric space, but to give ba-
sic insights into the complex unsteady flow physics of
self-sustained oscillating airfoils.

Despite the uncertainty of the quantitative predictions
for massively separated flows, we argue that the cur-
rent URANS study is nonetheless of significant practi-
cal interest as it provides the right physical trends and
thus, useful physical insights for the first time ever as
far as the author knows.



2.3 Boundary conditions and space dis-
cretization

The pitch-heave oscillating airfoil problem is here
solved in an accelerated translational frame of refer-
ence which thus requires moving body and moving
grid capabilities to simulate the pitching motion.

In OpenFOAM, a non-conformal interface can be used
in order to avoid deforming mesh and remeshing in the
close proximity of the airfoil. To take into account the
pitching motion, the inner part of the mesh, located
inside a radius of 2 chords about the pitching axis,
rotates rigidly with the body while the outer part re-
mains stationary as shown in Fig. 4. At the interface,
interpolation is calculated by a General Grid Interface
(GGI) algorithm. The approach has been thoroughly
validated in previous studies using Fluent and Open-
FOAM [2, 4].

Figure 4: Computational domain and grid details:
mesh size ∼ 80,000 cells.

Varying velocity is imposed at the inlet (50c upstream
of the airfoil) and boundaries far above and below the
wing to take into account the vertical motion of the air-
foil while constant mean static pressure is imposed at
the outlet. Acceleration terms are added as body forces
in the momentum equation. Adequate near-body reso-
lution (320 cells on both the upper and lower surfaces)
is used to capture accurately the vorticity gradients and
to satisfy the turbulence model requirement for the first
cell thickness, namely y+ ≤ 1 on the airfoil surface
over the whole cycle [3]. Mesh refinements close to
the airfoil in both the streamwise and wall-normal di-
rections have been shown to not influence the results.

3 RESULTS

3.1 Aeroelastic characteristics

Simulations were first performed in order to compare
with the experimental results of Mendes et al. [5]. The
same parameters as in the experiments were used for
the inertia, mass, rotation damping, rotational stiffness
and heaving stiffness. The heaving damping was first
set at Dh = 3.5 N·s/m (ζ = 0.1) which was established
as an educated guess following a personal communi-
cation with Poirel.

To start with, no initial perturbations are imposed. The
airfoil was initially at an angle of attack of zero degree
with no angular or heaving velocity. Using these ini-
tial conditions only small LCOs developed; no large
LCOs are obtained. The pitching amplitudes recorded
are very similar to the cases where only the pitching
motion was allowed (see Fig. 1). The plunging ampli-
tudes are very small, almost negligible. Changing the
heaving stiffness from small (75 N/m) to large (371
N/m) has no influence on the results.

The second step was to give the wing an initial pertur-
bation. Providing the wing with an initial heaving ve-
locity (v0 = 1m/s), the results obtained are very differ-
ent. Using the higher heaving stiffness, LCOs of large
pitching and heaving amplitudes are generated. How-
ever, when the smaller heaving stiffness is used, no
oscillations of significant amplitude occur as in the ex-
periments. Figure 5 presents the pitching and heaving
amplitudes as well as frequencies of the large LCOs
obtained.

Although the results do not show a good quantita-
tive agreement with the experimental measurements
of Mendes et al. [5], similar trends are observed.
Large pitching amplitudes are obtained over the whole
Reynolds number range with both turbulence models
as well as in the laminar simulations (no turbulence
model added). The numerical simulations also present
a decrease in pitching amplitudes at Reynolds numbers
higher than 90,000, a trend also present in the experi-
ments. However the simulations tend to predict higher
maximal angles of attack than the experimental mea-
surements.

Frequencies obtained from the computations are quite
close to the experiments, albeit slightly higher. Dis-
crepancies between the results can be caused by the
turbulence modeling and the two-dimensionnality of
the simulations since 2D URANS predictions have a
tendency to overestimate the lift due to the artificial
vortex coherence in the spanwise direction. It is of in-
terest to note that the frequencies of the two-degrees-
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Figure 5: Comparison of self-sustained 2 DOF oscil-
lations characteristics from numerical simulations and
experiments.

of-freedom oscillations are very close to those of the
pitch-only oscillations despite their different charac-
teristics.

Figures 6 and 7 show the airfoil’s pitching and heaving
amplitudes at Rec = 75,000 over the whole run along

with the power spectral density of the responses. Both
oscillations are periodic and they have the same dom-
inating frequency as expected. This is typical of all
cases over the range of Reynolds numbers of interest.
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Figure 6: Airfoil pitching amplitude and frequency
over the whole run at Rec = 75,000.
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Figure 7: Airfoil heaving amplitude and frequency
over the whole run at Rec = 75,000.

Figure 8 shows both the pitching and heaving response
for one LCO cycle at two Reynolds numbers. This
shows that there is phase-shift between the pitching
and heaving motions as the wing does not reach its
higher angle of attack when it is at the highest vertical
position. To quantify this phenomenon, φ is defined
as the phase-shift between the pitching and heaving
motions. It is presented in degrees to compare with
previous studies even though, in the present case, the
motions are not necessarily purely sinusoidal. Hence,
for example, φ = 90 degrees corresponds to a shift of
a quarter cycle between pitching and heaving.

At Rec = 75,000 the phase-shift is of 40 degrees (∼
1/10 cycle) while at Rec = 117,500 it is of 97 degrees
(∼ 1/4 cycle). Looking over the range of Reynolds
numbers, the phase-shift increases with the Reynolds,
from 24 degrees at Rec = 64,000 to 117 degrees at
Rec = 139,000. These results are presented in Table 1.

The evolution of the vertical force coefficient Cy and
the aerodynamic moment coefficient Cm in one LCO
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Figure 8: Pitching and heaving responses for one cycle
of LCO at two Reynolds numbers.

Re θmax (y/c)max f c/U φ

64000 48◦ 0.25 0.089 26◦

75000 55◦ 0.36 0.076 40◦

85500 59◦ 0.43 0.071 52◦

96000 60◦ 0.45 0.066 72◦

107000 58◦ 0.45 0.059 83◦

117500 54◦ 0.45 0.059 97◦

128000 49◦ 0.44 0.055 108◦

139000 45◦ 0.42 0.055 117◦

Table 1: Two DOF self-sustained oscillations charac-
teristics.

cycle is shown in Fig. 9 at the same two Reynolds num-
bers.
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Figure 9: Vertical force and moment coefficients for
one cycle of LCO at two Reynolds numbers.

Looking first at Cy, it increases rapidly from t/T = 0
to t = T/8. Then follows a sharp decrease (up to
t = 3T/8 at Rec = 75,000 and up to t = T/4 at Rec =
117,500) followed by a small plateau slightly above 0
around t = 3T/8 and then another decrease to a nega-
tive value. The moment coefficient has a somewhat op-
posite behavior. It is negative and decreasing at the be-
ginning of the cycle and reaches its lower value shortly
after Cy reaches its peak. It then increases and goes

through a small plateau similar to Cy before increasing
to a positive value. For both coefficients the opposite
behavior is observed in the second half of the cycle.

3.2 Flow dynamics

The instantaneous spanwise vorticity and pressure
contours at eight times in a half-cycle are shown
in Figs. 10 and 11 at Rec = 75,000 and Rec =
117,500. The flow dynamics is somewhat similar at
both Reynolds numbers. The wing begins its cycle
by pitching up, which causes the increase in Cy and
decrease of Cm shown in Fig. 9. The pivot point be-
ing relatively close to the leading edge, the high angle
of attack creates an important negative moment. Cy
reaches its peak value around t = T/8, when a lead-
ing edge vortex starts to appear. This separation of
the flow causes deep stall and the rapid decrease of
lift from t = T/8 to t = 3T/8 or t = T/4 depending
on the Reynolds. Cm reaches its lowest value around
t = T/4 when the wing is at its highest angle of at-
tack and then increases as the wing starts to pitch
down. The small plateau observed in both lift and
moment coefficients is caused by a trailing edge vor-
tex that forms around t = 3T/8 at Rec = 75,000 and
t = T/4 at Rec = 117,500. This vortex is bigger at
Rec = 117,500 and thus has a sligthly larger impact
on the force and moment. At all Reynolds number, a
2P vortex shedding mode [14] is observed as two pairs
of vortices are shed in each oscillation cycle.

Contrary to the pitch-only oscillations, laminar sep-
aration of the boundary layer is not the triggering
phenomenon of the self-sustained pitch-heave oscil-
lations [4, 9]. The large pitch-heave oscillations
have been obtained numerically with a fully turbulent
model (Spalart-Allmaras) and experimentally even
when placing a trip wire close to the leading edge, re-
vealing the secondary role of the boundary layer state.
The large oscillations reported here are thus not associ-
ated with laminar separation flutter as is the case with
the pitch-only oscillations. The LCOs observed here
are rather described as coalescence flutter. The insta-
bility causing coalescence flutter is due to the coupling
between the vertical and torsional degrees of freedom
of the airfoil [10]. If the center of gravity of the wing
is placed at the pivot point (xθ = 0 in Eqs. (3) and
(4)) then the equations of motion are not coupled and,
indeed, simulations performed with this value did not
produce any oscillations.

Figures 12 and 13 compare the contours of vorticity
and turbulent viscosity ratio (νt/ν) between simula-
tions with the Spalart-Allmaras model and simulations



(a) Vorticity contours

(b) Pressure contours

Figure 10: Instantaneous vorticity and pressure contours at Rec = 75,000.

with the transition model at the same instant in a cycle
at Rec = 75,000. There are some significant differ-
ences in the turbulent viscosity levels between these
two simulations as the results obtained with the transi-
tion model present lower levels of turbulent viscosity
close to the airfoil and in the wake. The flow dynamics
observed are somewhat in between those of a laminar
simulation and those of the fully-turbulent S-A model.
This is reflected in the vorticity contours which show
more unsteadiness in the solution computed with the
γ−Reθ model. Despite this difference in the instanta-
neous flow fields, the global results are very similar as
both models predict similar pitching and heaving am-
plitudes and frequencies.

4 CONCLUSION

Self-sustained pitch-heave oscillations of an airfoil
have been studied to gain some understanding of the
phenomenon. Two-dimensional URANS simulations
were performed using both the Spalart-Allmaras and
the γ− Reθ models. Predicted oscillation frequen-
cies were quite close to the experimental values while
pitching amplitudes did not exhibit such a good agree-
ment with the measurements from wind tunnel exper-
iments. However, they still showed comparable trends
and similarities. Discrepancies between the numerical
and experimental values could be caused by the 2D as-
sumption of the flow which has important impacts in



(a) Vorticity contours

(b) Pressure contours

Figure 11: Instantaneous vorticity and pressure contours at Rec = 117,500.

the case of massively separated flows.

As opposed to the pitch-only simulations which are
caused by laminar separation of the boundary layer,
these large oscillations are caused by an instability oc-
curing through the coupling between the pitching and
heaving motions and are thus labelled as coalescence
flutter. The analysis of the flow fields showed impor-
tant boundary layer separation at both the leading and
trailing edges, causing large vortex shedding.
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(a) Vorticity contours (b) Viscosity ratio contours

Figure 12: Instantaneous vorticity and turbulent
viscosity ratio contours at Rec = 75,000, Spalart-
Allmaras.

(a) Vorticity contours (b) Viscosity ratio contours

Figure 13: Instantaneous vorticity and turbulent vis-
cosity ratio contours at Rec = 75,000, γ−Reθ.
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