

Analysis of the performances of hydrokinetic cross-flow turbines with splitter plates

Thierry Villeneuve, Matthieu Boudreau and Guy Dumas

CFD Laboratory LMFN, Département de génie mécanique, Université Laval, Québec, Qc, Canada e-mail: Thierry.Villeneuve.2@ulaval.ca

Context

Cross-flow turbine

 (η) of a cross-flow turbine. In order to limit this

Typically, the end effects

are found to be very detri-

mental to the efficiency

negative effect, endplates can be added at the tip of the turbines' blades.

Important parameters:

- b/c: blade aspect ratio,
- σ: solidity,
- λ : tip speed ratio,
- Re: Reynolds number.

blade-

splitter plate-

Relative contribution of different sections of the blade in the span direction (z) to the efficiency $(b/c = 7, \ \sigma = 0.2857, \ \lambda = 4.25 \ \text{and} \ Re_c = 2.5 \times 10^5)$

- Without endplates With endplates z/b
- *Adapted from: Parametric study of H-Darrieus vertical-axis turbines using CFD simulations, Gosselin & al., 2016.

Observations:

- The endplates reduce the tip losses,
- However, they do not significantly increase the efficiency because of their drag,
- The drag of large endplates can even cancel out the energy extraction potential.

Possible alternative:

• Use fixed splitter plates which would be close enough so that the tip losses could be reduced without an added drag for the moving blades.

Main objectives of the study:

- Investigate the effect of splitter plates on the performances of a cross-flow turbine,
- Investigate the effect of the splitter plates on the wake of the turbine.

Simplified case: stationnary blade

In order to understand the physics in the small gap between the tip of a turbine's blade and a splitter plate, a simplified case which only consists of a single stationnary blade is first investigated.

Governing parameters:

- NACA0015 hydrofoil, • Aspect ratio b/c = 15,
- Angle of attack α = 10°,
- Splitter plate:
 - diameter D = 3c,

As the gap width (δ/c) is reduced, the lift coefficient of the blade $(\overline{C_L})$ increases.

splitter plate $\delta/c = 0.005$ reduces the 3D effects by 40%.

• The wing-tip vortex is deflected upward in the presence of the splitter plate and a counter-rotating vortex is created due to the interaction between the wing-tip vortex and the splitter plate.

Real case: complete turbine

Next steps of the study:

- Analyze the effect of the gap width (δ/c) on the efficiency of a turbine,
- Analyze the effect of various shapes of splitter plates,
- Compare the wakes of turbines with or without splitter plates.

*Boudreau & Dumas, Vortex Dynamics in the Wake of Three Generic Types of Free-Stream Turbines, Proc. of ISROMAC 2016, Hawaii, USA.

Financial support from the NSERC of Canada and computational resources provided by Compute Canada are gratefully acknowledged.